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Abstract— In this article, we investigated the performance of a 
real-time voice activity detection module exploiting different 
time-frequency methods for extracting signal features in a 
subject with implanted electrocorticographic (ECoG) electrodes. 
We used ECoG signals recorded while the subject performed a 
syllable repetition task. The voice activity detection module used, 
as input, ECoG data streams, on which it performed feature 
extraction and classification. With this approach we were able to 
detect voice activity (speech onset and offset) from ECoG signals 
with high accuracy. The results demonstrate that different time-
frequency representations carried complementary information 
about voice activity, with the S-transform achieving 92% 
accuracy using the 86 best features and support vector machines 
as the classifier. The proposed real-time voice activity detector 
may be used as a part of an automated natural speech BMI 
system for rehabilitating individuals with communication 
deficits. 

Keywords— Brain–machine interfaces (BMIs), 
electrocorticography (ECoG), time-frequency analysis, voice 
activity detection 

I.  INTRODUCTION 
rain machine interfaces (BMIs) were expected to be the 
next breakthrough in the field of rehabilitation for 

severely handicapped individuals. Several studies have made 
advances toward the development of effective motor [1]-[4] 
and speech prostheses [5]-[8] based on biological signals. 
These speech prostheses aim to completely replace the vocal 
mechanism of a locked-in individual [9] and enable the 
articulation of words directly or indirectly from neural 
activity. Recent studies have demonstrated the feasibility of 
using information in brain signals to discriminate between 

vowels and consonants during overt and covert speech [10], 
[11], to recognize a small set of spoken words [12], and even 
to classify whole sentences [13].  
As with automatic speech recognition systems, such 
neuroprosthetic devices need to be real-time and minimize 
power consumption [14] to be effective for realistic everyday 
use by patients. The experimental protocols proposed in 
current literature require human intervention or a trial-based 
system to differentiate between speech modes (speech versus 
silence), resulting in non-autonomous speech prosthetic 
systems. Meeting power constraints by limiting unnecessary 
signal processing was a crucial concern for clinically-viable 
permanently-implantable speech prosthetic systems. 
Therefore, the detection of individual’s speech activity (i.e., 
the time interval in which an individual speaks) was essential 
for their operation [15].  
Motivated by the need for automatic speech activity detection, 
we proposed a module for automatic real-time voice activity 
detection (VAD) from ECoG signals during syllable 
articulation. In addition, considering every time-frequency 
(TFR) approach should be viewed as a measurement device 
[16], meaning that the outcome was related not only to the 
inherent ECoG signal characteristics but also to the specific 
properties of the implemented transforms, we assume that the 
features extracted using different TFR techniques carry 
complementary information related to the non-stationary 
properties of the ECoG signals. We therefore examine 
different parametric and nonparametric TFR techniques in a 
machine learning scheme that may be used to recognize 
speech and non-speech intervals online and reliably using 
ECoG signals. 
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II. REAL-TIME VOICE ACTIVITY DETECTION 
MODULE 

The presented module for voice activity detection aimed to 
automatically process brain signals, enabling ECoG-based 
speech BMIs to be used in unconstrained environments in 
everyday life. In general, the purpose of such an online tool is 
to monitor and identify speech activity using a user’s brain 
activity. A block diagram of the VAD architecture is 
illustrated in Fig. 1.The recorded multichannel ECoG signals 
were transmitted to a local gateway for online processing. 
During online VAD, brain signals were initially preprocessed. 
Filtering was followed by frame blocking of the incoming data 
streams, neural data and speech data, to epochs of constant 
length with constant time-shift. After preprocessing, time-
frequency ECoG features were extracted. The extracted 
feature vector was next used as the input to the feature 
selection block. At this stage the discriminative ability of each 
TFR feature of each of the ECoG channels was ranked from 
the most discriminative to the least discriminative. Feature 
evaluation was performed to select the subset of features that 
most contribute to the accurate detection of speech activity 
while rejecting the features that will reduce the overall 
performance, either because they increase noise or because 
they do not contribute enough new information [17]. 

During the training phase of the voice activity detector a 
data set of feature vectors with known class labels was used to 
train a binary classification model (speech vs. non-speech). At 
the test phase the existing VAD model was used to choose for 
each epoch, using the feature vector, the corresponding speech 
class. 

III. MATERIALS AND METHODS 

A. Experiment and Data Acquisition 
One male patient diagnosed with intractable epilepsy 

participated in this study. The experimental protocol was 
approved by the Johns Hopkins Medicine Institutional Review 
Board, and the patient gave informed consent for this research. 
The subdural array contained 64 electrodes (Ad-Tech, Racine, 
Wisconsin; 2.3 mm exposed diameter, with 1 cm spacing 
between electrode centers) and was placed according to clinical 
requirements. Electrodes in the array are shown in Fig. 2. 

Localization of the ECoG electrodes after surgery was 
performed using Bioimage by co-registration of pre-
implantation volumetric MRI with post-implantation 
volumetric CT [18].  
Two syllable tasks (e.g. visual and auditory stimulus) were 
performed by the patient during ECoG recording. Syllable 
stimuli were presented and the patient was instructed to speak 
each syllable as it was presented. The syllables were 
constructed from two vowels (“ah” and “ee”) and six 
consonants, which varied by place of articulation and voiced or 
voiceless manner of articulation (“p”, “b”, “t”, “d”, “k”, hard 
“g”). Each of the 12 syllables was presented 10 times, for a 
total of 120 trials in each task. In the auditory version of the 
task, each trial was 4,000 ms long, while in the visual version 
each trial was 3,072 ms long. In both syllable tasks, between 
trials a fixation cross was displayed on the screen for 1,024 ms. 

Data was amplified and recorded through a NeuroPort 
System (Blackrock Microsystems, Salt Lake City, Utah) at a 
sampling rate of 10 kHz, and low pass filtered with a cutoff 
frequency of 500 Hz. The patient’s spoken responses were 
recorded by a Zoom H2 recorder (Samson Technologies, 
Hauppauge, New York), also at 10 kHz and time-aligned with 
ECoG recordings. Channels that did not contain clean ECoG 
signals were excluded from our analysis. 

B. Preprocessing and ECoG feature extraction 
Recorded data from each ECoG electrode were re-referenced 
by subtracting the common average (CAR) of electrodes in the 
same array, as defined by equation (1), 

1

1[ ] [ ] [ ]
NCAR

ch ch l
l

x n x n x n
N =

= − ∑   (1) 
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chx n were the ECoG and CAR referenced 

ECoG amplitudes on the ch-th channel out of a total of N 
recorded channels. The ECoG signals of each channel were 
also normalized by subtracting the average value and dividing 
by the standard deviation. The open source Praat software [19] 
was used to manually segment the patient’s spoken response 
and label the epochs as silence, speech and noise to train the 
corresponding models. The noisy intervals were excluded 
from the evaluation. 
Due to the non-stationary nature of the ECoG signals, spectral 
features do not provide any time domain information. In this 

 
Fig.1 Schematic of the real-time VAD module. Human ECoG recordings from human subjects were input to the VAD 
module, which outputs gateway control of voice activity for a speech BMI. The module pre-processes multichannel ECoG 
data to remove noise, extracts features relevant to VAD, selects highly predictive features, and classifies speech and non-
speech intervals. 



study, mixed time–frequency representations were used to 
map a one-dimensional signal into a 2D plane of time and 
frequency in order to analyze the channel-specific time-
varying spectral content of the brain signals. More 
specifically, we applied 4Q =  different time-frequency 
techniques to calculate the power spectrum in the 2D plane. In 
our analysis, the TFR-based ECoG features 
{ , , , } N Q L

SPG AR CWT STV V V V V × ×⊆ ∈  were averaged 
across time (within each sliding window) and frequency, 
separately for each dimension. In the frequency domain, we 
focused on 6L =  ECoG frequency bands, i.e., delta (1-4 Hz), 
theta (5-7 Hz), alpha (8-12 Hz), beta (18-26 Hz), gamma (30-
70 Hz) and high-gamma (80-200 Hz). Here, we used the range 
80-200 Hz to describe the high-gamma activity, similar to 
Canolty et al. [22]. In the time domain, we frame blocked each 
ECoG channel, using a Hamming window with length of 256 
samples and a step size of 128 samples. The feature extraction 
process resulted in the N Q LV × ×∈   feature vector. 
Here, we used the spectrogram (SPG), autoregressive model 
(AR), continuous wavelet transform (CWT) and S-transform 
(ST) as TFR representations. After testing, for the CWT we 
used a Morlet mother wavelet, and for AR modeling we used a 
model order of 20. 

C. Feature selection and classification 
The evaluation of the ECoG parameters was jointly based on 

spatial (i.e., the selected electrodes) and time-frequency 
characteristics and performed using the RelieF algorithm [20]. 
The RelieF algorithm evaluates the worth of a feature and 
generates a ranking score by repeatedly sampling an instance 
of the feature and finding the value of the given feature for 
discriminating the nearest instance of the class in which it was 
found and the alternative class (here speech or silence). We 
evaluated the performance of our VAD system by examining 
each TFR technique separately; meaning that one of the 
feature vectors { , , , } N Q L

SPG AR CWT STV V V V V × ×⊆ ∈ was 
forwarded to the feature selection stage. 

For classification we tested three classifiers used in 
literature [21] to examine the robustness of our method: 
support vector machines (SVM), K-nearest neighbors (KNN), 
and Naive Bayes. The evaluation of results was estimated using 

70% of the data for training and the remaining data to test our 
classification model. For the SVM kernel we used the radial 
basis function (RBF), with parameters C=10.0 and γ=0.5, 
which were found as optimal values after a grid search at C= 
{1.0, 5.0, 10.0, 20.0, 30.0} and γ= {0.001, 0.01, 0.1, 0.5, 1.0, 
2.0, 5.0}.Additionally, for the KNN classifier K=30 was found 
as the optimal parameter value after searching at K= {1, 10, 15, 
20, 25, 30, 40, 50}. 

IV. EXPERIMENTAL RESULTS  
The online VAD module described in Section II was evaluated 
following the experimental setup described in Section III. 
Online analysis requires a module that performs in real-time 
and with minimal computational effort. For this purpose we 
examined the performance of the VAD architecture, in terms 
of accuracy, for different numbers of features, chosen using 
RelieF-based feature ranking. The VAD accuracy, in 
percentage, for the N-best ECoG features for the tested 
classifiers is shown in Fig. 3. The best performance was 
achieved using the S-transform as a TFR representation. More 
specifically, we achieved 87%, 92%, and 88% accuracy using 
the 6-best, 86-best and 9-best features for Naive Bayes, SVM 
and KNN, respectively. Table I shows the highest accuracy 
achieved with different classifiers and TFR representations 
using the N-best ECoG features.  
Finally, in order to investigate the channels’ significance in 
relationship to their location on the brain, we averaged the 
feature ranking scores for each channel. The five electrodes 
that were ranked highest by the RelieF algorithm, shown in 
Fig. 2 with enlarged circles on the right hemisphere, were 
located in cortical areas typically involved in speech and 
language processing in the left hemisphere. Channel 19 was 
located over the right hemisphere area homologous to Broca’s 
area, which was active in speech production. Channel 27 was 
located over the right superior temporal gyrus (STG), which 
contains auditory association cortex, typically involved in 
speech perception. Channels 36, 41, and 43 were located over 
temporal cortex, which was involved in speech and sound 
perception. 

V. CONCLUSIONS 
In this paper, we examined the performance of an online voice 
activity detection module as part of a framework for an 
automated natural speech BMI, which may enable people to 

TABLE I.  HIGHEST ACHIEVED VAD ACCURACY (%) FOR 
DIFFERENT CLASSIFIERS USING THE N-BEST EXTRACTED TFR ECOG 

FEATURES 

  SVM Naïve  
Bayes KNN 

  Accuracy 
(%) 

N-best 
features 

Accuracy 
(%) 

N-best 
features 

Accuracy 
(%) 

N-best 
features 

AR 78.32 147 70.71 24 71.95 36 

CWT 68.21 111 52.44 8 61.89 117 

SPG 75.77 120 64.69 20 69.31 233 

ST 91.53 86 87.12 6 88.22 9 

 

 
Fig.2 Electrode locations in the subject. The markers show 
the five best ECoG electrodes for real-time VAD module. 
These electrodes were located over the right hemisphere 
homologue of Broca’s area, superior temporal gyrus, and 
other temporal cortices. 



communicate silently using brain activity. Data streams from 
ECoG recordings were used as input to the VAD module. We 
tested different time-frequency methods for feature extraction 
to study how TFR approaches influence the performance of 
our VAD architecture. Three classification algorithms were 
evaluated, among which the support vector machine algorithm 
was found to achieve the highest accuracy for this subject. 
Additionally, features extracted using the S-transform carried 
more information (achieving the highest performance) than 
features extracted using the other three methods tested. 
Finally, we found that channels 19, 27, 36, 41 and 43, which 
were located in cortex typically relevant to speech production 
and perception, were the most informative. 
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Fig. 3 VAD accuracy, in percentage, for different number of features (N-best), TFR techniques and classifiers. The ST was 
consistently the best-performing technique. For few features the Naïve Bayes and KNN classifiers performed best, but SVM 
achieved the highest accuracy overall. 
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