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In the present work, we investigate the performance of a number of traditional and recent speech 
enhancement algorithms in the adverse non-stationary conditions, which are distinctive for 
motorcycles on the move. The performance of these algorithms is ranked in terms of the 
improvement they contribute to the speech recognition accuracy, when compared to the baseline 
performance, i.e. without speech enhancement. The experiments on the MoveOn motorcycle speech 
and noise database indicated that there is no equivalence between the ranking of algorithms based on 
the human perception of speech quality and the speech recognition performance. The Multi-band 
spectral subtraction method was observed to lead to the highest speech recognition performance. 
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1.   Introduction 

Technological advances in the Internet protocol (IP)-telephony domain have leaded to an 
increased interest to provide accessibility to the large domain of web application over the 
phone, with personal assistant-based dialogue systems offering higher comfort to the end-
users1,2. Higher demands with respect to efficiency, comfort and safety are imposed to 
those services that have transited from the controlled office/home environment to the 
mobile outdoors environment. On the route, driver distraction can become a significant 
problem, thus highly efficient human-machine interfaces and interaction are required to 
enable car or motorcycle drivers to interact with mobile systems and services in an easy, 
risk-free way. 

Spoken language dialogue systems considerably improve driver's safety and user-
friendliness of human-machine interfaces, due to their similarity to the conversational 
activity with another human, a parallel activity to which the driver is used to and it allows 
him to concentrate on his main activity, the driving itself. Driving quality, stress and 
strain situations and user acceptance when using speech and manual commands to 
acquire certain information on the route has previously been studied3, and the results have 
shown that, with speech input, the feeling of being distracted from driving is smaller, and 
road safety is improved, especially in the case of complex tasks. Although natural 
human-to-human interaction can be considered multimodal, as speech is usually 
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combined with free hand gestures, interpretation of gestures in a multimodal setting is 
challenging even in a controlled environment4. Moreover, assessment of user 
requirements from multimodal interfaces in a car environment has shown that when the 
car is moving the system should switch to the "speech-only" interaction mode, as any 
other safety risks (i.e. driver distraction from the driving task by gesture input or 
graphical output) must be avoided5. 

The performance of speech-based interfaces, although reliable enough in controlled 
environments to support speaker and device independence, degrades substantially in a 
mobile environment, when used on the road. There are various types and sources of noise 
interfering with the speech signal, starting with the acoustic environment (vibrations, 
road/fan/wind noise, engine noise, traffic, etc.) to changes in the speaker's voice due to 
task stress, distributed attention, etc. In the integration of speech-based interfaces within 
vehicle environments, the research is conducted in two directions: (i) addition of front-
end speech enhancement systems to improve the quality of the recorded signal, and (ii) 
training the speech models of the recognizer engine on noisy, real-life, speech databases. 

Preliminary speech/noise detection using front-end speech enhancement methods for 
noise suppression has shown promising results and currently benefits from the 
suppression of interfering signals by using a microphone array, which enables both 
spatial and temporal measurements6. The advantages of multi-channel speech 
enhancement can be successfully applied to the car environment, while in the motorcycle 
environment, due to processing power limitations, research is focused to one-channel 
speech enhancement. After more than three decades of advances on the one-channel 
speech enhancement problem, four distinct families of algorithms seem to have 
predominated in the literature: (i) the spectral subtractive algorithms7, (ii) the statistical 
model-based approaches8,9,10, (iii) the signal subspace approaches11,12, and (iv) the 
enhancement approaches based on a special type of filtering13. 

As previously mentioned, the accuracy of the recognition task is also highly improved 
by using suitably trained speech models for the recognizer engine, including sufficient 
noise scenarios from the application domain. Dedicated speech corpora have previously 
been designed, recorded and annotated, starting with the car environment, and emerging 
with the motorcycle one. A European initiative, co-funding the design and 
implementation of speech databases in support of the development of multilingual speech 
recognition applications in the car environment, started in 1998 with the SPEECHDAT-
CAR project14. The databases developed within this project were designed to include 
phonetically balanced speech for the needs of training generic speech recognition 
systems, but also domain-specific data, needed for adapting the acoustic models of 
speaker-independent automatic speech recognition systems to the automotive 
environment. Databases for ten European languages were collected within the 
SPEECHDAT-CAR project, with recordings from at least 300 speakers for each 
language, and seven characteristic environments (low speed, high speed, with audio 
equipment on, etc).  
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The CU-Move corpus consists of five domains, including digit strings, route 
navigation expressions, street and location sentences, phonetically balanced sentences 
and a route navigation dialog in a human Wizard-of-Oz like scenario, considering 500 
speakers from United States of America and a natural conversational interaction15. 

For the motorcycle environment, the SmartWeb motorbike corpus has been designed 
for a dialogue system dealing with open domains16. Recently, a domain specific (police 
domain) database, dealing with the extreme conditions of the motorcycle environment, 
has been developed in the MoveOn project17. In this database, the focus is the specificity 
of the domain, where the cognitive load of motorcyclists is quite high and the accuracy of 
recognition of spoken commands in the context of a template driven dialog, in the 
motorcycle environment, is of high priority. 

In the present study, we investigate the applicability of various speech enhancement 
algorithms for the specifics of the motorcycle-on-the-move environment. These 
algorithms are ranked in terms of the improvement they bring to the speech recognition 
performance, when compared to the case when no speech enhancement is employed. The 
speech enhancement component that is in the focus of the present study is a crucial part 
of front-end of a spoken dialogue interaction system, which provides hands-free 
information support to the motorcyclists. This speech-based interface is part of a multi-
modal and multi-sensor interface developed in the context of the MoveOn project. 
Following, a brief overview of the MoveOn system, the speech enhancement methods 
evaluated, and the experimental setup and results are presented.  

 

2.   System Description 

The MoveOn system is a multi-modal and multi-sensor, zero-distraction interface for 
motorcyclists that provides the means for hands-free operation of a command and control 
interface, which enables information support of police officers on the move. This 
information support is either obtained remotely from the control centre in the police 
station, through a secure terrestrial trunked radio (TETRA) link, or locally through the 
functionality provided by a wearable computing environment developed for that purpose. 
This environment offers functionalities such as navigation support, accessing local user-
specific data repository, storing video and audio streams for reporting and evidence 
collection purposes, automated plate number recognition, automated logging and diary 
capabilities, information recall and storage on request, visualization and alert 
mechanisms, communication with colleagues on the road or in flying vehicles, etc. The 
remote information support guarantees command, control, and guidance support as well 
as access to forensic and other police databases located at the central police station. 
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The MoveOn system is implemented as a wearable solution, which constitutes of a 
set of purposely-designed accessories, such as a helmet, a waist and gloves. The helmet 
and the waist are connected through a flexible connector located just bellow the scruff of 
the neck. The gloves, which incorporate push-buttons and a scroller-based haptic 
interface, are connected to the waist through a flexible connection near the wrist. The 
helmet incorporates microphones, headphones, visual feedback, a miniature camera and 
some supporting local-processing electronics. It has a flexible connection, incorporating 
universal serial bus (USB) connector to the waist, which provides the power supply, and 
the data and control interfaces. The waist incorporates the main processing power, 
storage repository, the TETRA communication equipment and the power capacity of the 
wearable system, but also a number of sensors, a liquid crystal display (LCD), and some 
vibration feedback actuators. Among the sensors deployed on the waist are acceleration 
and inclination sensors, and a global positioning system (GPS) device, which provide the 
means for the context awareness of the system. Auxiliary microphone and headphone are 
integrated in the upper part of the waist, at the front side near the collar, for guaranteeing 
the spoken interaction and communication capabilities when the helmet is off. 

The multimodal user interface developed for the MoveOn application consists of 
audio and haptic inputs, and audio, visual and vibration feedbacks to the user. Due to the 
specifics of the MoveOn application, involving hands-busy and eyes-busy motorcyclists, 
speech is the dominating interaction modality.  

The spoken interface consists of multi-sensor speech acquisition equipment, speech 

 

Fig. 1. Block diagram of the MoveOn multimodal interaction. 
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pre-processing, speech enhancement, speech recognition, and text-to-speech synthesis 
components etc. This interface has to provide the proper recognition and interpretation of 
the speech input and to deliver non-distractive, intelligible and naturally sounding 
feedback to the user. Achieving these objectives within the operational environment of 
the MoveOn application is not a trivial task, and it requires proper design and 
implementation of the speech front-end and the system’s feedback to the user.  

The spoken interface is build on a multimodal dialogue interaction framework, based 
on Olympus/RavenClaw18,19, which was extended for the needs of multimodal 
interaction. Each component in the system is a server on itself (i.e. ASR, TTS, speech 
pre-processing, speech enhancement, etc are servers), communicating either directly with 
each other or through a central hub, which provides synchronization.   

Since the noisy motorcycle environment constitutes a great challenge to the spoken 
dialogue interaction, a special effort is required to guarantee high speech recognition 
performance, as it proved to be the most crucial element for the overall success of the 
interaction. The robust operation of the speech recognition component depends on 
successful elimination of noise, while preserving the speech signal integrity. The fast-
varying noise conditions and the huge number of interferences that may appear 
simultaneously, which is typical for motorcycle on the move, constitute the greatest 
challenge for the speech enhancement algorithms. 

3.   Speech Enhancement Methods 

In the present study, we consider eight speech enhancement techniques, which are tested 
in the fast-varying conditions of the motorbike-on-the-move environment. In earlier 
work20, these algorithms were evaluated in terms of objective assessment of the 
perceptual quality of de-noised speech. In the present work, the focus falls on the 
performance of these algorithms, evaluated in terms of the improvement of the speech 
recognition accuracy they add, when compared to the baseline speech recognition 
accuracy, i.e. obtained without speech enhancement.   

3.1.   Spectral Subtraction 

The spectral subtraction (SPECSUB) algorithm21, which is a well-known technique, is 
often used as a baseline against which other speech enhancement algorithms are 
compared. This algorithm relies on the fact that the power spectra of additive independent 
signals are also additive. Thus, in the case of stationary noise, in order to obtain a least 
squares estimate of the speech power spectrum, it suffices to subtract the mean noise 
power. Due to its low complexity and good efficiency, the spectral subtraction method is 
a standard choice for noise suppression at the pre-processing stage of speech recognition 
systems. Due to its well-known performance, the spectral subtraction algorithm serves 
here as an intuitive reference point. 
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3.2.   Spectral Subtraction with Noise Estimation 

The spectral subtraction with noise estimation (SPECSUB-NE)22 tracks spectral minima 
in each frequency band without any distinction between speech activity and speech 
pause. Based on the optimally smoothed power spectral density estimate and the analysis 
of the statistics of spectral minima an unbiased noise estimator is implemented. Due to 
the last, this algorithm is more appropriate for real world conditions, and was reported to 
outperform the SPECSUB in non-stationary noise environments. 

3.3.   Multi-Band Spectral Subtraction 

The multi-band spectral subtraction method (M-BAND)7 is based on the SPECSUB 
algorithm but accounts for the fact that in real world conditions, interferences do not 
affect the speech signal uniformly over the entire spectrum. The M-BAND method was 
demonstrated to outperform the standard SPECSUB method resulting in superior speech 
quality and largely reduced musical noise. The results presented in 7 as well as our 
previous experience with the MoveOn data20 suggested that this method may perform 
well in terms of improvement of the speech recognition accuracy. 

3.4.   Speech Enhancement Using a Minimum Mean Square Error Log-Spectral 
Amplitude Estimator 

The speech enhancement using a minimum mean square error log-spectral amplitude 
estimator8, which we refer to as (Log-MMSE), relies on a short-time spectral amplitude 
estimator for speech signals, which minimizes the mean-square error of the log-spectra. 
This speech enhancement method belongs to the category of statistical model-based 
algorithms.  In previous work20, it was observed to offer very good performance on the 
MoveOn data, and therefore it is a strong candidate for achieving excellent improvement 
of the speech recognition accuracy. 

3.5.   Speech Enhancement Based on Perceptually Motivated Bayesian Estimators 
of the Speech Magnitude Spectrum 

The speech enhancement based on perceptually motivated Bayesian estimators (STSA-
WCOSH) of the speech magnitude spectrum9 utilizes Bayesian estimators of the short-
time spectral magnitude of speech based on perceptually motivated cost functions. It was 
demonstrated that the estimators, which implicitly take into account auditory masking 
effect, perform better in terms of having less residual noise and better speech quality, 
when compared to the Log-MMSE method. We selected this method due to its relatively 
good performance20, but also because we were interested to investigate if this advantage, 
when compared to Log-MMSE, will contribute for better speech recognition 
performance. 
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3.6.   Subspace Algorithm with Embedded Pre-whitening 

The subspace algorithm with embedded pre-whitening (KLT)10 is based on the 
simultaneous diagonalization of the clean speech and noise covariance matrices. 
Objective and subjective evaluations suggest that this algorithm offers advantage when 
the interference is speech-shaped or multi-talker babble noise. 

3.7.   Perceptually-Motivated Subspace Algorithm 

The perceptually-motivated subspace algorithm (PKLT)11 incorporates a human hearing 
model in the suppression filter in order to reduce the residual noise. From a perceptual 
perspective, the perceptually based eigen-filter introduced here yields a better shaping of 
the residual noise. This method was reported to outperform the KLT method. 

3.8.   Wiener Algorithm Based on Wavelet Thresholding Multi-Taper Spectra 

The Wiener algorithm based on wavelet thresholding (WIENER-WT) multi-taper 
spectra12 uses low-variance spectral estimators based on wavelet thresholding the multi-
taper spectra. Reported listening tests had shown that this method suppressed the musical 
noise and yielded better speech quality than the KLT, PKLT and Log-MMSE algorithms.  
Based on these reports, we expect that the WIENER-WT algorithm will be a strong 
candidate for the best performance. 

4.   Experimental Setup 

The speech interaction interface described in Section 2 was tested with each of the speech 
enhancement techniques outlined in Section 3. Different environmental conditions and 
configuration settings of the speech recognition engine were considered for the 
evaluation experiments. In the following, we describe the speech data, the speech 
recognition engine and the experimental protocol utilized in the present evaluation. 

4.1.   The MoveOn Speech and Noise Database 

In the MoveOn project, a dedicated domain-specific speech database was recorded in the 
motorcycle environment for the purpose of research and technology development17. In 
detail, thirty professional motorcyclists, members of the operational police force of UK, 
participated in the recordings of the database. Each participant was asked to repeat a 
number of domain-specific commands and expressions, or to provide a spontaneous 
answer to questions related to time, current location, speed, etc. The prompt sheets, each 
one containing 302 prompts, were provided to the participants via earplug as sequences 
of pre-recorded audio prompts, while they were performing patrolling activates with their 
motorcycles. 

The amount of collected audio data consists of approximately forty hours of 
recordings, distributed in forty recording sessions. During the recording of each session, 
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different motorbikes and helmets were used, while the trace of the road differed among 
them. In detail, each session included in-city driving, highway, tunnels, suburbs, etc. 
Furthermore, ten sessions with the same hardware but in office environment (indoors) 
were recorded. 

Four audio channels, recorded simultaneously, constitute each recording session: (i) 
two from omni-directional microphones (AKG C 417''') placed within the helmet -- 10 
cm one from another -- at the two sides of the mouth; (ii) one channel from a throat 
microphone (Alan AE 38); and finally (iii) one channel that mixes the first of the in-
helmet microphones with the audio prompts that were played to the speaker. This fourth 
audio channel served as reference for the synchronization of the channels during the 
annotation phase. The language of all recordings is British English spoken by native 
speakers. 

The database was recorded at 44.1 kHz, with resolution 16 bits per sample. Later on, 
all recordings were down-sampled to 8 kHz for the needs of the present application. 

The recordings were annotated in a multi-tier scheme. The annotations include 
different tiers for speech transcriptions, emotional tags, and various noise tags, such as:  
background noise, transient interferences (air-wind noise, engine noise, other noise, and 
sound events). The transient noises were labelled for their position and their estimated 
magnitude. One additional tier indicates when the helmet visor is open or closed, since 
this condition significantly affects both the amount and the shaping of noise. 

4.2.   Speech Recognition 

In the present evaluation, we employed the Julius23 speech recognition engine. The 
decoder of the recognition engine was utilized together with two different acoustic 
models, a general-purpose acoustic model and an adapted acoustic model. In addition, an 
application-dependent language model was used in all cases. 

The general purpose acoustic model was trained from telephone speech recordings of 
the British SpeechDat(II) database24, with the exploitation of the HTK toolkit25. The 
general purpose acoustic model consists of three-state left-to-right HMMs, without 
skipping transitions, one for each phone of the British SpeechDat(II) phone set. Each 
state is modelled by a mixture of eight continuous Gaussian distributions. The state 
distributions were trained from parametric speech vectors, taken out from speech 
waveforms after pre-processing and feature extraction. 

The pre-processing of the speech signals, sampled at 8 kHz, consisted of frame 
blocking with length and step 25 and 10 milliseconds respectively, and pre-emphasis with 
coefficient equal to 0.97. The speech parameterization consisted in the computation of the 
first twelve Mel frequency cepstral coefficients26, computed through a filter-bank of 26 
channels25, and the energy of each frame. The first and second derivatives of the 13 static 
speech parameters were appended to the initial vector, resulting to a parametric vector of 
dimensionality equal to 39. All HMMs were trained with the Baum-Welch algorithm27, 
with convergence ratio equal to 0.001. 
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The adapted acoustic models, one for each speech enhancement method, were 
obtained by means of maximum a posteriori28 (MAP) adaptation of the general-purpose 
British English acoustic model that was described above. The adaptation was performed 
with the exploitation of the corresponding enhanced speech recordings of the MoveOn 
database. 

The language model was built with the utilization of the CMU Cambridge Statistical 
Language Modelling (SLM) Toolkit29. Specifically, we used the transcriptions of the 
responses of the MoveOn end-users to the system30 to build bi-gram and tri-gram word 
models. Words included in the application dictionary but not in the list of n-grams were 
assigned as out-of-vocabulary words. 

5.   Experimental Results 

The performance of different enhancement methods, implemented as in 31, was examined 
by evaluating their effect on the speech recognition accuracy. During the evaluation, we 
considered different environmental conditions as well as different experimental setups. 

In detail, we examined the speech recognition performance under (i) indoors and (ii) 
outdoors recording conditions, after applying the speech enhancement methods, 
described in Section 3. The performance of each enhancement method in the indoors 
recording condition was used as a reference, while the outdoors condition is the 
environment of interest. In contrast to previous work20, were the performance of 
enhancement algorithms was investigated on the basis of objective tests on the enhanced 
signals, here we examine directly the operational functionality of the ASR component by 
measuring the speech recognition performance. Specifically, the word recognition rates 
(WRRs) obtained by the speech recognition process after applying each speech 
enhancement method was measured. The WRR is an indicator of the amount of words 
that were deleted, substituted or inserted, comparing to the real word sequence that was 
uttered. 

The speech recognition accuracy under the indoor recording conditions was examined 
with the exploitation of the general-purpose acoustic model, while for the case of the 
outdoor recordings the accuracy was examined considering both a general acoustic model 
and adapted acoustic. In terms of these performance measures, we assess the practical 
worth of each algorithm and its usefulness with respect to overall system performance. 
These results are compared against the quality measures obtained in earlier work20. 

5.1.   Speech Recognition using General Acoustic Model 

As a first step, we evaluated the speech recognition performance for each of the speech 
enhancement methods described in Section 3. The speech recognizer was tested with both 
bi-gram and tri-gram language models, using the general purpose acoustic model 
described in Section 4. The experimental results for the indoor recording conditions are 
shown in Table 1. 
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Table 1.  Speech recognition performance (WRR in percentages) for various speech 
enhancement techniques for the indoors recordings, using general acoustic model. 

Enhancement Techniques 2-gram LM 3-gram LM 

Log-MMSE 76.75 70.29 
No Enhancement 76.71 70.25 
M-BAND 75.61 71.27 
SPECSUB-NE 74.25 68.53 
PKLT 74.10 67.85 
WIENER-WT 73.48 67.15 
KLT 69.69 63.95 
STSA-WCOSH 66.16 59.10 
SPECSUB 50.89 40.35 

 
As can be seen in Table 1, the best performing method for the case of indoor 

recordings was the Log-MMSE together with the non-enhanced speech inputs (indicated 
as “No Enhancement”). In all remaining methods, the speech recognition performance 
was decreased. This reduction is owed to the distortion that these speech enhancement 
methods introduce into the natural/unprocessed speech signal. Obviously, under the 
indoor environmental conditions, where generally noise-free speech is captured by the 
microphones, the speech recognizer performs better without any speech enhancement 
pre-processing. 

As Table 1 presents, the speech recognition performance for the bi-gram language 
model was better than the one for the tri-gram language model. This result can be 
explained by the limited amount of the application data that were available for the 
training of the language models. As the experimental results indicate, the data were 
sufficient for training the bi-gram model but not enough for the robust estimation of all 
tri-gram word probabilities. 

In Table 2, we present the speech recognition performance for all the examined 
speech enhancement methods, for the case of outdoor recording conditions, i.e. the 
motorcycle on the move. The results are presented in terms of WRR, for both the bi-gram 
and tri-gram language models. 

In contrast to the indoor environmental conditions, the application of speech 
enhancement techniques in the noisy outdoor conditions (motorcycles on the move) 
improved the speech recognition performance. All the evaluated speech enhancement 
methods demonstrated superior performance comparing to the baseline performance, i.e. 
without speech enhancement (indicated as “No Enhancement” in Table 2). This is owed 
to the fact that although the speech enhancement techniques introduce a distortion to the 
original speech signal (which is noisy in this case), their effect results to a processed 
signal that is acoustically more close to the phonetic patterns of the acoustic model than 
the non-enhanced one. 

As shown in Table 2, the multi-band speech enhancement technique, M-BAND, 
outperformed all other methods evaluated here, achieving accuracy of approximately 
55% for bi-gram language model. The perceptually motivated Bayesian estimator 
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enhancement technique, STSA-WCOSH, achieved the second-best performance, 
following the leading M-BAND technique by approximately 6% lower, in terms of WRR. 
Similarly to the indoors case, the bi-gram language model provided more accurate 
recognition results also in the outdoor environment. 

These results reveal, that the ranking of speech enhancement algorithms based on the 
human perception of speech quality (please refer to 20) differs from the ranking in terms 
of speech recognition performance. Specifically, the M-BAND algorithm, which was 
among the top-4 performers in terms of perceptual quality, is the best performing 
algorithm in terms of WRR. 

5.2.   Speech Recognition using Adapted Acoustic Models 

As a second step, we evaluated the performance of the speech enhancement algorithms of 
interest, using adapted acoustic models. As described in Section 4, for each speech 
enhancement algorithm one adapted acoustic model was employed. The performance of 
the speech recognition engine using the adapted acoustic models was tested on the 
motorcycle environment, i.e. the outdoor recordings. The results, in terms of percentages 
of WRRs, are presented in Table 3, where the “No Enhancement” technique corresponds 
to MAP adaptation of the general acoustic model on the outdoor environment without the 
use of any speech enhancement algorithm. 

As can be seen in Table 3, the STSA-WCOSH enhancement method achieved the 
highest speech recognition performance, when compared to the other evaluated 
enhancement algorithms. For the case of speech decoding with bi-gram language model, 
the STSA-WCOSH method improved the WRR by 3.32% when compared to the baseline 
performance (i.e. the “No Enhancement” case). The STSA-WCOSH method is followed 
by the M-BAND, which achieved slightly lower speech recognition performance than the 
first one, but still improved the baseline performance by 2.35%. The methods Log-
MMSE, SPECSUB-NE and SPECSUB achieved lower speech recognition performance 
but still offer some improvement when compared to the baseline results. In contrast to 
these methods, the PKLT, KLT and WIENER-WT methods offered significantly inferior 

Table 2.  Performance (WRR in percentages) for various speech enhancement techniques 
for the outdoors recordings, using general acoustic model. 

Enhancement Techniques 2-gram LM 3-gram LM 

M-BAND 55.16 49.65 
STSA-WCOSH 49.56 41.73 
SPECSUB-NE 46.34 30.87 
PKLT 39.76 29.40 
Log-MMSE 39.22 27.83 
KLT 39.20 27.84 
WIENER-WT 35.64 29.06 
SPECSUB 26.95 14.84 
No Enhancement 23.77 14.29 

 



Iosif Mporas, Todor Ganchev, Otilia Kocsis, Nikos Fakotakis 
 
12 

speech recognition performance, when compared to the use of adapted acoustic model 
without speech enhancement.   

As Table 3 presents, the performance of the speech recognition decoder was higher 
for the case of bi-gram language model, when compared to the one for tri-gram model. 
This is in agreement with the experimental results obtained when using general-purpose 
acoustic model, reported above. 

In order to investigate the statistical significance among the different WRRs, reported 
in the second column of Table 3, we performed the Wilcoxon signed-rank test32. The 
highlighted cells correspond to statistically similar recognition results. As the Wilcoxon 
test indicated, the word recognition rates reported in the second column of Table 3 are not 
statistically different among the cases where the speech enhancement is performed by the 
Log-MMSE, SPECSUB-NE and SPECSUB methods.  The speech recognition results for 
the best performing STSA-WCOSH method is statistically different from the remaining 
methods. 

Similarly to the case with general-purpose acoustic model, the ranking of speech 
enhancement algorithms in terms of speech recognition performance, presented in Table 
3, is partially aligned with the ranking in terms of speech quality evaluation reported in 
previous work20. The difference in these rankings is an indication of the dissimilarity 
between the human perception of speech quality and the automatic speech recognition 
process. Since here we are interested in the functionality of the dialogue system, the 
ranking of the enhancement methods in terms of speech recognition performance is a 
more appropriate criterion for configuring the speech front-end, when compared to the 
subjective speech perception tests, or the objective measures previously used21. 

The experimental results indicated the importance of the use of acoustic models, 
adapted to the environmental conditions of the motorcycle on the move, as well as of the 
speech enhancement technique that is utilized. Indeed, the use of adapted acoustic models 
improved the speech recognition performance by approximately 30%, when compared to 
the best performing enhancement method, using the general-purpose acoustic model. 
Furthermore, the use of an acoustic model, adapted to the environmental conditions, 

Table 3.  Performance (WRR in percentages) for various speech enhancement techniques 
for the outdoors recordings, using adapted acoustic models. 

Enhancement Techniques 2-gram LM 3-gram LM 

M-BAND 85.70 75.12 

STSA-WCOSH 86.67 76.10 

SPECSUB-NE 84.85 74.38 

PKLT 77.93 65.53 

Log-MMSE 84.86 74.23 

KLT 82.41 70.34 

WIENER-WT 81.29 70.29 

SPECSUB 84.83 75.45 

No Enhancement 83.35 71.62 
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without the use of any enhancement algorithm offered approximately 28% improvement 
of the WRR, comparing to the non-adapted acoustic model. 

6.   Conclusion 

Aiming at successful human-machine interaction in the motorcycle environment, we 
evaluated the recognition performance of a purposely-built speech front-end. Various 
speech enhancement techniques were assessed in an attempt to find the most appropriate 
pre-processing of the speech signal in the fast-varying noisy conditions. The experimental 
results demonstrated severe degradation of the speech recognition performance in the 
conditions of the motorcycle environment, compared to the clean-speech recordings 
conducted with the same hardware setup. The multi-band spectral subtraction method 
demonstrated the best performance among the eight evaluated techniques, when 
measured in terms of improvement of the speech recognition rate using a general-purpose 
acoustic model. In the case of using adapted acoustic models, the best performance was 
achieved by the speech enhancement method based on perceptually motivated Bayesian 
estimators (STSA-WCOSH) of the speech magnitude spectrum. Finally, the use of 
acoustic models that are adapted to the environmental conditions of the motorcycle on the 
move as well as the selection of an appropriate speech enhancement technique, proved to 
be essential for the successful interaction between the user and the dialogue system. 
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