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Abstract 

In the present work we address the problem of phonetic segmentation of emotional speech. 

Investigating various traditional and recent HMM-based methods for speech segmentation, which we 

elaborated for the specifics of emotional speech segmentation, we demonstrate that the HMM-based 

method with hybrid embedded-isolated training offers advantageous segmentation accuracy, when 

compared to other HMM-based models used so far. The increased precision of the segmentation is 

consequence of the iterative training process employed in the hybrid-training method, which refines the 

model parameters and the estimated phonetic boundaries taking advantage of the estimations made at 

previous iterations. Furthermore, we demonstrate the benefits of using purposely-built models for each 

target category of emotional speech, when compared to the case of one common model built solely 

from neutral speech. This advantage, in terms of segmentation accuracy, justifies the effort for creating 

and employing the purposely-built segmentation models per emotional category, since it significantly 

improves the overall segmentation accuracy. 
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1. Introduction 

Over the last years, there is an extensive use of automated systems, supporting voice or multimodal 

human-machine interaction [1], such as voice portals, call centers, e-banking, info kiosks, web services 

and applications etc. Due to the wide-spread use of this technology and the demand for convenient and 

efficient interaction, the design and development of natural and user-friendly speech interfaces became 

of primary importance. 

In general, humans feel more natural when communicating with other humans because of the extra 

information represented in their non-verbal expressions can be recognized, processed, and reflected [2]. 

During a human-to-human interaction, there are two channels transmitting in parallel, one conveying 
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the explicit information of the uttered message and one transmitting implicit information about the 

speakers themselves [3, 4]. Due to the deficiencies of the present-day human-machine interaction 

technology, and specifically, due to the lack of machine-based emotional intelligence [2], there is a gap 

between the information conveyed and the information perceived when humans interact with automatic 

systems. Thus, one particular prerequisite for achieving naturalness of the human-machine interaction 

is the processing and comprehension of the implicit emotional information on the machine side, 

together with the explicit message. 

Speech front-ends, which support emotional expressivity, include emotion recognition (ER) [ER, 

ER2], automatic speech recognition (ASR) of emotional speech and emotional text-to-speech (TTS) 

conversion. In general, the ASR is designed with one acoustic model [5] or language model [6] for 

each emotion of interest, while the TTS consists of one voice for each emotion [7, 8] or modulation of 

one voice to the specifics of each emotion [9, 10]. The performance of the speech front-end directly 

affects the naturalness of the human-machine interaction, i.e. the ER and ASR are responsible for the 

recognition of the incoming implicit and explicit information and the TTS is responsible for the 

feedback to the user and the expression of emotions. 

Generally, the training of ER and ASR modules does not require phonetic time-alignment of the 

training speech recordings, since embedded algorithms [11] are used. Still, there are some approaches 

that exploit such information [12]. However, for the creation of a TTS voice, where the unit-selection 

approach has dominated the speech synthesis area, the availability of phonetic transition positions is a 

prerequisite. Moreover, since in the unit-selection approach the synthetic speech signal results from the 

concatenation of the speech units which are extracted from a training corpus, the precision of the time-

alignment of the phonetic boundaries is essential for the quality of the synthetic speech signal. 

The construction of an emotional TTS requires the availability of recordings of a speaker, together 

with the corresponding phonetic time-alignment, for each emotional speaking style of interest [7, 8]. 

Presently, the most precise way to annotate the positions of the phonetic transitions is manually by 

expert phoneticians. However, since manual phonetic time-alignment is a tedious, time-consuming and 

expensive task, automatic segmentation methods are usually employed. Presently, automatic 

segmentation methods achieve lower performance, comparing to the manual ones, thus corrections 

over the automatically extracted boundaries are usually performed by human annotators. In this 

connection, it is straightforward that the more accurate the automatic segmentation method is the less 
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time will be spent by the human annotator to correct the estimated phonetic boundaries. Particularly, in 

the case of direct use of the automatically estimated boundaries, without subsequent manual 

corrections, the misalignment of the phonetic boundaries has a significant effect on the quality of 

synthetic speech. Hence, the accuracy of the automatic segmentation is crucial in terms of time and 

cost demands as well as for the quality of the synthetic speech. 

Several approaches for time-aligning speech waveforms with their corresponding phonetic 

sequences have been proposed, with most popular among them the dynamic time warping (DTW) [13] 

and the HMM-based [14-16] methods. In DTW, the original speech waveform is aligned against a 

synthetic speech signal, with known phone boundary positions, produced by an existing TTS. In the 

HMM-based approach the speech waveform is time-aligned against a phone label sequence utilizing a 

set of HMM phone models, i.e. a phone recognizer. The phone recognizer can be trained directly from 

the speech signals that are needed to be time-aligned, through the Baum-Welch algorithm [11]. 

The phonetic segmentation of an emotional speech database with the DTW approach would 

require the existence of one synthetic voice per emotion, which usually is not the case. Alternatively, 

the use of a non-emotional TTS would offer precise alignment only for emotions, whose speech 

characteristics are close to the ones of the neutral speaking style. On the other hand, the HMM-based 

approach offers the possibility to separately train HMMs for each emotion, and thus construct one 

phone recognizer dedicated to each category of emotional speech. Consequently, in the present work, 

due to the absence of an emotional TTS, we rely on the HMM-based approach, which we find more 

attractive for the task of phonetic segmentation of emotional speech. 

In the task of emotional speech segmentation, a typical drawback for the HMM approach is the 

limited size of the available speech database [17]. Since there are some practical and ethical issues that 

restrict the possibilities for collecting real-life corpora of emotional speech, most of the existing 

emotional speech databases consist of limited-size acted speech, spoken from professional actors [18-

21]. The usually restricted amount of data does not allow the training of robust models, which results to 

suboptimal phonetic segmentation accuracy.  

In the past, few efforts have been spent on the task of emotional speech segmentation [17, 22]. 

These efforts have mainly focused on the utilization of the standard HMM-based approach, which is 

typically used for the segmentation of non-emotional speech, as well as on the possibility of merging 

training data from different emotion categories, in order to improve the robustness of the HMM 
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models, and therefore the precision of the boundary estimations. 

In the present work, we count on a recently proposed HMM-based method for phonetic 

segmentation of speech, which employs hybrid embedded-isolated training [23], and we adapt it on the 

task of phonetic segmentation of emotional speech. This method, which in the following is referred to 

as HYBRID training method, is evaluated and its performance is contrasted against other HMM-based 

methods studied in the literature on the same task. In detail, we investigate the performance of the 

proposed method and compare it to a baseline HMM-based segmentation method, utilizing emotion-

independent and emotion-dependent phone models. Additionally, in order to compensate for the 

limited amount of training data, we experiment with two model adaptation techniques for HMMs, 

which allow the model parameters of a general model to be adapted to the characteristics of the 

emotional speech for each category. Finally, we investigate the performance of the HYBRID training 

method for different types of training data and for the cross-category case of emotional speech 

segmentation, i.e. when the processed speech data do not match the category of emotional speech, for 

which the HMM model was built. None of the methods considered here makes use of bootstrap speech 

data with marked phonetic boundaries. 

The remainder of this paper is organized as follows. In Section 2, we present the standard HMM-

based method, which we consider here as the baseline as well as the HYBRID training method adapted 

for the task of emotional speech segmentation. In Section 3 we provide a description of the 

experimental setup, including the description of the emotional database and the settings of the HMMs. 

In Section 4, we present the experimental results and discuss various aspects of the experimental 

evaluation. Finally, Section 5 concludes this study. 

 

2. HMM-based Segmentation of Emotional Speech 

In contrast to non-emotional speech, where the spectral and prosodic (e.g. phone duration) 

characteristics of each phone exclusively depend on its context in a uniform manner, in emotional 

speech the phonetic characteristics present dissimilarities among the different emotions even for the 

same context. In phonetic terms, the variations in the phonetic characteristics can be attributed to 

differences in the voice quality, precision of articulation and deviations from the canonical segmental 

content [22]. Thus, the already tedious task of automatic phonetic segmentation becomes even more 

challenging in the case of emotional speech, since the spectral characteristics of each phone depend not 
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only on its phonetic context but also on the emotional state of the speaker. In the following subsections, 

we describe four HMM-based methods for automatic phonetic segmentation of emotional speech. 

 

2.1. Baseline HMM-based Segmentation Method 

The HMM-based segmentation method, which we consider here as the baseline, is inspired from the 

speech and phone recognition tasks and became popular because of its well known structure [ASR]. 

Specifically, in this method each emotional speech waveform is initially decomposed to a sequence of 

feature vectors, using a speech parameterization technique. Afterwards, a set of HMM phone models 

(phone recognizer) is utilized to extract the corresponding phonetic sequence as well as the positions of 

the phonetic boundaries. When segmenting speech corpora the word transcription of each speech 

waveform is usually known and can be converted to a phonetic label sequence through a letter-to-sound 

converter. In this linguistically constraint case, where the present work falls in, the phone recognizer is 

confined at the detection of the phonetic transition positions. Specifically, each phone label sequence is 

force-aligned against the corresponding feature vector sequence and the phone model set, through the 

Viterbi algorithm [24]. 

When segmenting emotional speech recordings, the utilized phone recognizer can be trained either 

from a merged dataset, which includes more than one categories of emotional speech – leading to 

emotion-independent (EI) phone models, or separately from speech data of the different categories of 

emotional speech – leading to emotion-dependent (ED) phone models. The block diagram of the 

HMM-based phonetic segmentation for emotional speech, in the linguistically constrained case is 

shown in Fig. 1, where the case of EI phone models is shown in Fig. 1(a), and the case of ED phone 

models in Fig. 1(b). 

_____________________ 

FIGURE 1 

_____________________ 

 
If preexisting phone recognizers are not available, phone models can be trained directly from the 

emotional speech data, which are going to be segmented (target data), with flat-initialization and 

parameter refinement via the Baum-Welch algorithm [11]. Alternatively, if manually segmented 

bootstrap speech data are available (which is not the case in the present study), they can be used for 

phone model training via the Viterbi algorithm [24]. 
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2.2. Adapted HMM-based Segmentation Method 

In the baseline HMM-based segmentation, discussed in Section 2.1, the training data of each category 

of emotional speech are utilized independently from the other categories, and are processed separately 

to train emotion-specific ED phone models. This splitting of the training data, in combination with the 

restricted size of the emotional speech database [18-21], does not allow the training of robust HMM 

models for each phone. One way to avoid this drawback is to design a two-step training process where 

at the first step we train EI phone models, and subsequently at the second step adapt them on the 

training dataset of each emotion. This method is described as HMM-based segmentation with ED 

model adaptation from a common EI model and in the present simply referred to as adapted HMM-

based segmentation method.  

In detail, initially Baum-Welch training is utilized to train HMM phone models over the entire 

speech data. The resulting emotion-independent HMMs are utilized as initial models from an 

adaptation algorithm, which adjusts the parameters of the HMMs on the speech dataset of each 

emotion. Several techniques for the adaptation of HMMs have been proposed, among which are the 

maximum likelihood linear regression (MLLR) [25] and the maximum a-posteriori (MAP) adaptation 

[26]. In the present work, we consider the MAP adaptation of the HMM phone models. 

 

2.3. Hybrid HMM-based Segmentation Method 

In [23], an HMM-based phonetic segmentation method that employs hybrid embedded-isolated training 

was introduced and successfully applied for phonetic segmentation of non-emotional speech. This 

method, which utilizes both Baum-Welch and Viterbi training to refine the HMMs parameters, was 

reported to offer superior segmentation performance, when compared to the baseline HMM-based 

method with embedded trained phone models. 

The hybrid HMM-based segmentation method consists of two successive steps, the embedded 

initial training of the phone models and the isolated-unit iterative training. In detail, one HMM model 

for each phone is trained with flat-initialization of all the HMM parameters over a training speech data 

set and re-estimation of them with the Baum-Welch algorithm. The resultant HMM phone models are 

used to time-align the speech waveforms against their corresponding phonetic sequences and compute 

a first estimation of the positions of the phonetic boundaries. These boundaries are used for isolated-
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unit (Viterbi) training of HMM phone models and subsequently for phonetic time-alignment. As a 

result, updated phone-boundaries are created, which are utilized as a feedback to construct new isolated 

HMM models, which subsequently will be time-aligned. After each iteration refined phone boundary 

positions are estimated and the iterative process terminates when the overall boundary shift between 

two successive iterations reach a predefined threshold. The advantage of the hybrid method comparing 

to the typical HMM segmentation is that enforces the training of the phone model parameters from 

speech samples of the specific phone and thus the Viterbi algorithm trains HMMs with sharper 

distributions, which leads to more accurate estimation of the phonetic transition positions. 

In the present work, we study a modification of this method that situates it in compliance with the 

task of phonetic segmentation of emotional speech. In brief, the modifications, with respect to the 

scheme presented in [23] consist of the utilization of multiple phone recognizers, one for each 

emotional category, for the estimation of the initial phonetic boundaries of the emotional speech 

waveforms. Furthermore, after each isolated-unit training iteration one phone recognizer for each 

emotional category is constructed and separately used during Viterbi time-alignment. Thus, in contrast 

to the hybrid training architecture presented in [23], where in every step all the data were processed 

together and one refined phone recognizer was constructed, here each emotional training dataset is 

processed separately from the other datasets, and for each emotional category different phone 

recognizers are refined. The block diagram of the hybrid training method for phonetic segmentation of 

emotional speech is shown in Fig. 2. 

_____________________ 

FIGURE 2 

_____________________ 

In detail, the emotional speech recordings of interest are initially processed by an ED phone 

recognizer to time-align each speech waveform with the corresponding phonetic label sequence. After 

this initial phonetic boundary estimation, Viterbi training on the detected boundaries, followed by time-

alignment using the new phone models is iteratively applied on the emotional speech recordings. After 

each iteration, more precise phone boundary positions are detected. After a sufficient number of 

iterations, the estimated phonetic transition positions do not change noticeably, and thus no further 

improvement in the segmentation accuracy is achieved. The training process is terminated when the 

overall boundary shift between two successive iterations reaches a predefined threshold. Thus, as 
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shown in Fig. 2, the final boundary estimations are the outcome of that Viterbi time-alignment, for 

which the termination criterion was met. 

 

3. Experimental Setup 

The performance of the HMM-based methods described so far was tested in the task of phonetic 

segmentation of emotional speech. Different HMM setups for the segmentation methods described in 

Section 2 were examined in a common experimental protocol. 

 

3.1. Speech Database 

In the present evaluation, we employed the Greek Emotional Speech (GrES) database [18]. The GrES 

database consists of recordings of a thirty-years-old Greek professional actress. It has been recorded in 

studio environment using a high-quality microphone, sampling frequency 44.1 kHz and resolution 16 

bits per speech sample. 

The recordings include acted speech of the five major emotion categories, i.e. Anger, Fear, Joy, 

Neutral and Sad. The same linguistically and prosodically rich text was uttered across all emotional 

speaking styles. The prompts, the meaning of which does not underlie any emotional concept, were 

extracted from the literature, newspapers and/or were set up by a professional linguist. All speech 

recordings have been annotated manually to their corresponding phonetic units by an expert 

phonetician. The data are distinguished to 25 short sentences, 21 long sentences and 16 paragraphs per 

emotion type, resulting in total to 310 speech files. Further information concerning the GrES database 

is available in [18]. 

 

3.2. Phone Recognizer 

For the construction of the phone models, we utilized the HTK toolkit [27]. All phonetic models were 

trained from the corresponding speech data to be segmented, i.e. the training and test data fully 

overlapped. 

For the needs of our evaluation all speech recordings were down-sampled to 16 kHz. The speech 

waveforms were frame blocked with a shifting Hamming window of 20 milliseconds, moving with step 

5 milliseconds. Pre-emphasis with factor equal to 0.97 was performed, employing a first-order FIR 

filter. For every speech frame, we computed the 12 first Mel frequency cepstral coefficients [27] and 
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the 0-th cepstral coefficient. The delta and double-delta coefficients of the 13 static MFCC parameters 

referred above where appended to the initial feature vector constructing the final feature vector of 

length 39. 

All words in the annotations of the GrES database were converted to their corresponding phone 

sequences, utilizing a set of 35 phones. This phone set is a modification of the SAMPA [28] alphabet 

for the Greek language. For each of the 35 phones and for each of the HMM methods outlined in 

Section 2, a left-to-right HMM, with three-states and no skipping transitions, was utilized. The states of 

the HMMs were modeled by one up to eight continuous Gaussian distributions. All phone models were 

context-independent, since they were observed to achieve higher accuracy in the task of phonetic 

segmentation [29, 30]. 

 

3.3. Experimental Protocol 

For each of the HMM-based methods described in Section 2 a common experimental protocol was 

followed. In detail, we used the whole database to train EI phone models. Apart from these models, we 

also trained ED phone models, utilizing the corresponding data of each emotion, with Baum-Welch 

training (maximum likelihood criterion – ML). As an alternative to the ML training, the EI phone 

models were adapted with the speech recordings of each emotion using the MAP criterion. Finally, 

separately for each subset of emotional speech data, the ED phone models were used to obtain initial 

estimates of the phonetic transition positions and afterwards HMM phone models are trained through 

the iterative hybrid training method. 

For all segmentation methods evaluated here, the data subsets used to train each phone recognizer 

were afterwards used as test data to measure the segmentation accuracy for each category of emotional 

speech. The only exception is the case of EI phone models where the training set consisted of 

recordings from all categories of emotional speech, and where the segmentation accuracy was 

estimated separately for each category as before. 

The segmentation accuracy was measured in terms of the percentage of the estimated boundaries, 

whose misalignment is within the admissible tolerance of 20 milliseconds from the manually annotated 

boundary labels, which is the most commonly used figure of merit [14, 15, 23, 31]. This tolerance is 

considered as an acceptable limit for producing good quality synthetic speech [32, 33]. In addition, we 

report the segmentation accuracy in terms of mean absolute error (MAE) in milliseconds. 
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4. Experimental Results 

In the experimental evaluation, we firstly investigate the segmentation accuracy for the phonetic 

segmentation methods outlined in Section 2. Afterwards using the best-performing method, we study 

various aspects of phone model creation and utilization. 

 

4.1 Phonetic Segmentation Accuracy for the Different HMM-based Methods 

The experimental results for the phonetic segmentation methods outlined in Section 2 are shown in 

Tables 1 and 2, in terms of MAE and in terms of segmentation accuracy for boundary misalignment 

within the tolerance of 20 milliseconds, respectively. The first column in the table indicates the number 

of mixture components m in each HMM state. In the tables, EI stands for the emotion-independent 

models, ED for the emotion-dependent models, MAP for the adapted models, and finally HYBRID for 

the phone models trained with the hybrid method. The best HMM setup, i.e. the most favorable number 

of mixtures per state, for each method and for each emotion is indicated in bold. 

 

Table 1 

Table 2 

 

4.1.1 Influence of the method 

As can be seen in Table 2, the HYBRID method achieves the highest segmentation accuracy, both in 

terms of MAE and in terms of misalignment within a tolerance of 20 milliseconds, for all categories of 

emotional speech. The experimental results, both in terms of MAE and misalignment within the 

tolerance of 20 milliseconds, indicate that the MAP and ED methods offer equivalent speech 

segmentation accuracy across the five evaluated emotional speaking styles. In addition, the ED  phone 

models do not perform significantly better than the EI ones, which is in agreement with [22], were it 

was shown that the use of emotion-specific models do not significantly improve the overall 

performance and thus are not worth the effort. Exception is the Neutral case, where the use of ED 

models offers an improvement of the segmentation accuracy by more than 6%, in terms of 

misalignment within the admissible tolerance of 20 milliseconds, and by approximately two 

milliseconds reduction of the misalignment in terms of MAE. 
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As Table 1 presents, for the common EI acoustic model there are several HMM setups (e.g. 1, 3, 6 

and 7 mixture components) for category Joy, where the MAE increases dramatically. Analysis of the 

errors in these specific setups found out that the significant increase of MAE, is due to the large 

number of gross-error misalignments, which are mainly observed at the beginning and at the end of 

words. The largest contributors for the high MAEs are the phonetic categories stops, fricatives and 

vowels at the beginnings and endings of words and to some extent nasals in the beginning of words. In 

general, the phone-to-phone transitions, where the phonetic categories stops, fricatives and vowels are 

involved, were found as the most affected by the acoustic mismatch between emotional speech from 

category Joy and the common EI acoustic model, which is general enough not to model precisely Joy.  

 

4.1.2 Influence of the emotion type 

In the following, we focus out attention to the best-performing segmentation method, HYBRID, and its 

segmentation accuracy for the different categories of emotional speech. As the experimental results 

presented in Tables 1 and 2 show, there are significant differences in the segmentation accuracy among 

the different categories of emotional speech. The highest phonetic segmentation accuracy, in terms of 

admissible misalignment within tolerance t≤20ms, was observed for the category Joy, while the lowest 

one for Anger. Specifically, in the case of Joy, which is a relatively modal voice, the HYBRID method 

achieved 84.2%. Following, relatively high segmentation accuracy was observed for the category 

Neutral speech, which does not present extreme speaking modes or other emotive bursts, and for the 

category Fear, which is soft speech of low intensity. However, the HYBRID method offered 

significantly lower phonetic segmentation accuracy – 75.8 % and 77.9 % for the categories Anger and 

Sad,  respectively. The relatively lower accuracy for category Anger that is observed here is in 

agreement with [22], and is mainly owed to the flustered speech with weakly articulated structures, 

which often results to weak or missing occlusions in stop sounds or even the omission of whole 

segments. The difficulty in segmenting speech from the category Sad is owed to the presence of 

stuttering and quite breathy voice, which does not facilitate the segmentation process. Another 

drawback in the phonetic segmentation performance of Sad speech could be the presence of not-loud 

speech, which results to not clear articulation of the corresponding phones. 
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4.1.3 Influence of the number of mixtures in the HMM setup 

Another interesting observation is that for any of the methods, there is no specific HMM setup (i.e. 

number of Gaussian mixtures per state) that presents superior performance across all emotional 

categories. This behavior is owed to the different characteristics of the emotional categories, with 

respect to the clarity of the produced spectrum, the insertion of laughter and breath, and the precision of 

the articulation. The experimental results presented in Table 1, in terms of MAE and for the best 

performing HYBRID method, indicate that for the categories Fear, Joy and Sad, the phonetic 

segmentation accuracy is higher for the HMMs with many Gaussian mixtures per state than for the 

ones with few. For the category Anger, the performance is better when fewer mixtures are used, while 

in the category Neutral, the effect of the number of mixtures per HMM state affects significantly less 

the segmentation accuracy. 

In previous studies on phonetic segmentation of non-emotional (neutral) speech [31, 34] it was 

shown that HMMs with fewer Gaussian components achieve higher segmentation accuracy, due to the 

inherent variance of the spectrum in the vicinity of a phonetic transition, which makes a simpler model 

more adequate. However, for the HYBRID method this variation in the spectral characteristics and the 

manner of articulation characteristic for the emotional categories Fear, Joy and Sad, when modelled by 

several rather than a single Gaussian distribution contributes for improving the phonetic segmentation 

accuracy. 

As Table 1 presents, the number of mixture components in the some setups were either too many, 

such as in Joy for ED and MAP models for eight mixtures, or too few, such as in Neutral and Sad for 

EI models and one mixture. These results indicate the simultaneous dependency of the segmentation 

accuracy on both the amount of available training data and the underlying distribution of the data for 

each emotion category. The last well explains the observation that different HMM setups were found 

out as optimal for segmentation of the different emotion categories, even for the same speech 

segmentation method. 

 

4.1.4 MAE vs. admissible tolerance of misalignment 

As seen in Tables 1 and 2 for the best performing HYBRID method, there is some discrepancy between 

the performance estimation in terms of MAE and in terms of segmentation accuracy for misalignment 

within the admissible tolerance t≤20 milliseconds. This disagreement between the two figures of merit 
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is owed to the fact that the two criteria take into account different aspects of the segmentation accuracy. 

Indeed, the MAE shows the overall misalignment error including the gross errors [35], while the 

estimated segmentation accuracy for misalignment within a given tolerance only counts in boundary 

estimations, for which the error does not exceed the admissible tolerance. Thus, gross errors do not 

significantly affect the segmentation performance, when it is presented in terms of segmentation 

accuracy within an admissible tolerance. 

From a practical point of view, the difference between the two figures of merit used here is more 

clear in the case of EI models for Joy and 1, 3, 6 and 7 mixtures per state, for Neutral and Sad for 1 

mixture, as well as for ED and MAP models in Joy with 8 mixtures. In these cases, as presented in 

Table 1, the MAE is notably high, while the segmentation accuracy for misalignment within the 

admissible tolerance t≤20 milliseconds (Table 2) does not drop significantly. This difference indicates 

that for the specified cases many of the misalignments outside the admissible tolerance were in fact 

gross errors.  

From the results discussed in this section, we can conclude that the hybrid training for HMM-

based phonetic segmentation of emotional speech is the most appropriate method when compared to 

other HMM-based methods, such as HMMs with emotion-independent, emotion-dependent or 

emotion-adapted phone models. 

 

4.2 Phonetic Segmentation Accuracy for Different Training Data Types 

As a next step, we examined the effect of the utterance length in the training data (i.e. short sentences, 

long sentences and paragraphs) on the phonetic segmentation accuracy and the cross-emotional 

phonetic segmentation accuracy of models trained on data from different emotional category than the 

test recordings. The effect of these two factors was also examined in [17], where they were found to 

affect the accuracy of the segmentation of emotional speech. The phonetic segmentation performance 

was examined utilizing the best-performing method, i.e. the HYBRID method. For each category of 

emotional speech, the most successful HMM setup in terms of segmentation performance (in bold in 

Tables 1 and 2) was selected. According to the results shown in these tables, for the segmentation 

accuracy presented in terms of MAE, we selected the HMM models with number of mixtures per state 

m=2, 6, 5, 6, 8 for the emotions Anger, Fear, Joy, Neutral and Sad, respectively. Likewise, in terms of 
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segmentation accuracy for misalignment within the admissible tolerance t≤20ms, we selected these 

with m=4, 6, 2, 1, 3. In the following we discuss only the selected results. 

In Table 3 we present the phonetic segmentation performance obtained when training the HMM 

models with training data of different sentence lengths, i.e. short sentences, long sentences and 

paragraphs, tested on the corresponding data types. The reported segmentation accuracies, in terms of 

MAE, correspond to measurements of the performance only on the corresponding types of training 

data. The colored cells correspond to the training set types that achieved higher segmentation accuracy 

than the merged training dataset, denoted as ‘All data’. The best segmentation accuracy for each 

emotion is indicated in bold. Similarly, Table 4 presents the phonetic segmentation accuracy in terms 

of misalignment within the admissible tolerance t ≤20 milliseconds for different types of training data, 

with respect to the sentence length. 

 

Table 3 

Table 4 

 

As can be seen in Tables 3 and 4, the use of the entire training set, ‘All data’, for the training of the 

phone models does not always improve the overall phonetic segmentation performance. In detail, in 

terms of MAE, merging all speech data to a common training set decreases the performance for all the 

evaluated emotion categories and for most of the training set types. As presented in Table 4, for most 

training sets, the segmentation accuracy in terms of admissible misalignment tolerance t≤20 

milliseconds is higher for set-dependent training. Exception is the category Anger, where none of the 

set-specific training sets outperforms the merged training set. This observation is owed to the different 

way that a given speaker is expressing the same emotion in paragraphs and short sentences [17, 36], 

which results to different articulation of same phones, even in the same context. Thus, using data of 

different speaking styles does not help for the improvement of the phonetic segmentation accuracy. 

This is in agreement with [17], where similar results were found when using sentences and paragraphs. 

In Tables 5 and 6, we present phonetic segmentation accuracies for the cross-emotional evaluation, 

in terms of MAE and misalignment within the admissible tolerance of t ≤20 milliseconds, respectively. 

In both tables, the rows correspond to the set of speech data, which was used to train the HMM phone 

models, while the columns correspond to the speech data on which each phone model was evaluated. 
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Table 5 

Table 6 

 

The results (i.e. the segmentation accuracy both in terms of MAE and in terms of misalignment 

within the admissible tolerance t≤20), show that not always the phone models trained on data of a 

specific emotion category can best segment emotional speech of that category. For example, it was 

observed that emotional speech from the categories Anger and Sad is segmented with better accuracy 

by the phone models trained for Joy, than by the ones trained with speech data from their own 

category. This is in agreement with [17] where ‘sadness’ was found to be segmented best from phone 

models trained with ‘happiness’ recordings. Furthermore, the conclusion of Gallardo-Antolin et al. [17] 

that fast-speech models can better segment slow-speech than the other way around is partially 

confirmed here. For example, Sad is better segmented by Fear and Joy models, when compared to 

HMMs trained from the same emotional type. Oppositely, in the case of Neutral speech, the ‘faster’ 

Fear and Joy phone models do not improve the precision of the phonetic time-alignment. 

Finally, we investigated the accuracy for cross-emotion segmentation when using a common 

number of mixtures per HMM state for all emotion categories, instead of the best performing model for 

each category as it was above. For that purpose, we selected the HYBRID method with six Gaussian 

components, which corresponds to the best setup in terms of MAE, and three mixtures for the case 

when segmentation accuracy is measured in terms of misalignment within the admissible tolerance 

t≤20 milliseconds. The corresponding results are shown in Tables 7 and 8, respectively. 

 

Table 7 

Table 8 

 

As can be seen in Tables 7 and 8, even for a common number of mixtures per state, specific 

categories of emotional speech are not segmented best by the models trained with emotional speech of 

the same category. Similarly to the results in Tables 5 and 6, here we observe that emotional speech 

from the categories Anger and Sad is segmented with better accuracy (in terms of MAE) by the phone 

models trained for Joy, than by the ones trained with speech data from their own category. However, in 
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terms of misalignment within the admissible tolerance t≤20 milliseconds, only emotional speech from 

category Anger is not segmented best by its own model, but by the model of Joy. 

In summary, the experimental results presented in this section show two different aspects that 

concern the automatic segmentation of emotional speech, namely the length of the spoken utterance 

and the appropriateness of phone models from specific emotion category to segment emotional speech 

from other categories. Particularly, our observations led us to the conclusion that data from specific 

categories of emotional speech could be merged together and utilized for training common HMM 

models. Such merging might facilitate the partial alleviation of the problem with the shortage of 

training data.  

 

5. Conclusion 

In the present work, we examined the performance of four HMM-based methods on the task of 

phonetic segmentation of emotional speech. In detail, the baseline HMM-based speech segmentation 

approach was evaluated using emotion-independent, emotion-dependent and emotion-adapted phone 

models, and compared against a recently proposed HMM method with hybrid embedded-isolated 

training, which was modified here for the needs of emotional speech segmentation. The experimental 

results demonstrated that the hybrid training method detects the phonetic transition positions of 

emotional speech significantly better than the other methods, for all categories of emotional speech 

considered here. Specifically, the hybrid training method improved the segmentation accuracy in terms 

of misalignment within the admissible tolerance of 20 milliseconds by approximately 7.6% for Anger, 

19.1% for Fear, 18.5% for Joy, 8.1% for Neutral and 14.2% for Sad, when compared to the second 

best performing in each case EI/ED/MAP HMM-based method. These results confirm the advantage of 

the hybrid training method on the task of phonetic segmentation of emotional speech. 

Furthermore, as reported in Section 4, the phone segmentation accuracy for emotional speech 

improves for matching train and test conditions, such as same sentence length, rhythm and speaking 

style. Thus, these factors should be taken into consideration, for optimizing the phonetic segmentation 

accuracy. Finally, in the cross-emotional experiments it was observed that phone models trained on 

speech data of specific emotional categories can offer a more accurate phonetic time-alignment, than 

others. 
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The task of emotional speech segmentation was observed as more tedious than the segmentation of 

neutral speech. This is owed to the presence of implicit information in the speech signal, which 

indicates the emotional state of the speaker, and results in a greater variation of the spectral 

characteristics of phones, even when they reside in the same phonetic context. This variability makes 

the detection of the phonetic transition positions more difficult, when emotional speech is segmented. 
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Fig. 1. Block diagram of the HMM-based phonetic time-alignment for emotional speech, 

utilizing (a) emotion-independent phone models and, (b) emotion-dependent phone models. 
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Table 1. Segmentation performance in terms of mean absolute error (MAE). All numbers are the misalignment in milliseconds. 

 Anger Fear Joy Neutral Sad 
m EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID 
1 50.3 23.0 23.1 17.8 53.1 25.1 24.8 19.3 149.1 28.5 28.5 18.0 95.6 19.8 19.6 14.1 134.7 41.2 39.8 28.8 
2 34.8 17.8 17.8 14.2 39.7 19.7 19.8 16.0 24.5 21.4 21.4 15.7 34.4 17.8 17.1 14.5 21.4 23.5 23.5 17.0 
3 37.6 17.4 18.0 15.3 44.7 20.4 20.1 13.2 108.8 23.5 22.8 16.2 32.7 18.6 18.3 14.0 49.8 21.7 21.6 15.8 
4 37.3 16.6 16.6 14.3 45.0 20.2 20.2 13.7 32.2 20.8 20.7 16.1 19.8 24.1 18.0 14.1 23.7 20.6 20.5 14.4 
5 16.2 19.3 17.9 16.9 19.5 23.1 20.7 12.3 19.3 19.6 19.6 13.1 20.0 18.4 18.8 19.9 18.7 19.0 18.9 43.9 
6 15.1 15.5 15.7 16.9 19.4 18.6 18.6 12.2 126.9 21.4 21.3 13.5 20.1 17.5 17.4 14.0 18.7 18.5 18.3 14.7 
7 15.5 16.4 16.0 16.7 19.5 19.3 18.9 12.4 116.5 20.9 20.8 15.8 23.2 17.7 17.6 15.2 18.8 18.8 18.9 42.9 
8 15.8 16.9 16.9 17.2 19.7 19.2 19.2 13.0 19.6 110.9 114.8 14.4 23.1 18.3 24.3 14.9 19.2 19.1 19.2 14.2 
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Table 2. Segmentation accuracy for misalignment within the admissible tolerance of t≤20 milliseconds for the estimated boundaries. All numbers are in percentages.  

 Anger Fear Joy Neutral Sad 
m EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID EI ED MAP HYBRID 
1 57.1 58.3 58.5 73.6 54.7 54.5 55.5 71.3 53.9 57.9 57.8 81.9 63.8 74.0 74.6 82.7 57.5 58.8 59.1 74.4 
2 64.5 65.5 65.3 75.1 59.5 61.9 61.3 69.8 64.9 65.7 65.8 84.2 67.4 71.0 72.5 80.6 63.5 63.0 63.0 70.9 
3 65.1 65.0 64.2 75.7 58.5 58.9 60.2 79.0 62.9 64.2 64.1 82.1 64.6 70.0 70.8 81.5 61.5 61.5 61.6 77.9 
4 65.4 65.2 65.3 75.8 58.2 57.8 57.8 76.8 63.1 63.9 64.0 82.7 64.2 67.5 69.1 79.8 61.6 63.3 63.2 76.1 
5 66.3 64.9 64.2 73.6 59.5 58.0 58.5 80.7 63.7 64.3 64.2 82.8 64.7 70.7 70.3 79.0 62.3 61.6 60.9 76.1 
6 68.2 66.5 66.3 73.8 59.1 59.7 59.9 81.0 63.4 63.7 64.0 81.5 65.7 71.6 72.0 79.1 62.8 63.1 62.6 73.7 
7 67.2 64.9 66.1 73.5 58.6 58.6 59.9 80.4 63.1 63.1 63.6 77.7 66.5 71.6 71.9 77.6 63.7 63.0 62.9 73.9 
8 66.5 64.0 63.9 71.9 58.0 59.1 58.9 78.7 64.4 61.8 62.4 79.4 66.0 71.9 69.3 78.7 63.1 62.9 62.6 75.4 
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Table 3. Segmentation performance in terms of MAE (in 
milliseconds) for different training sets. Colored cells 
correspond to the training sets, which offered higher 
segmentation accuracy than the overall training set (‘All data’). 

Training Set Type Anger Fear Joy Neutral Sad 
Short Sent. 14.6 13.4 21.3 13.5 15.9 
Long Sent. 13.9 12.4 12.6 13.8 13.7 
Paragraphs 16.3 12.0 12.4 12.8 14.1 

All data 14.2 12.2 13.1 14.0 14.2 
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Table 4. Segmentation accuracy in percentages for 
misalignment within the admissible tolerance t≤20 
milliseconds for different training sets. Colored cells 
correspond to the training sets, which offered higher 
segmentation accuracy than the overall training set (‘All 
data’). 

Training Set Type Anger Fear Joy Neutral Sad 
Short Sent. 72.6 77.8 79.1 78.9 74.1 
Long Sent. 73.7 80.5 84.0 84.4 78.6 
Paragraphs 68.3 81.6 84.3 85.2 74.4 

All data 75.8 81.0 84.2 82.7 77.9 
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Table 5. Cross-emotional segmentation accuracy in terms 
of MAE (in milliseconds) for the HYBRID method 

 Test Set 
Training Set Anger Fear Joy Neutral Sad 

Anger 14.2 23.0 17.0 23.1 17.6 
Fear 24.0 12.2 23.9 20.5 14.2 
Joy 11.0 16.1 13.1 17.5 15.0 

Neutral 24.3 12.1 58.0 14.0 16.8 
Sad 16.1 13.0 19.3 24.7 14.2 
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Table 6. Cross-emotional segmentation accuracy in 
percentages for misalignment within the admissible 
tolerance t≤20 milliseconds for the HYBRID method 

 Test Set 
Training Set Anger Fear Joy Neutral Sad 

Anger 75.8 66.0 76.8 68.2 71.2 
Fear 59.5 81.0 71.2 72.7 78.1 
Joy 81.4 74.8 84.2 74.0 78.5 

Neutral 57.0 74.1 72.8 82.7 76.3 
Sad 71.6 75.5 77.3 69.1 77.9 
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Table 7. Cross-emotional segmentation accuracy in terms 
of MAE (in milliseconds) for 6 mixtures per HMM state. 

 Test Set 
Training Set Anger Fear Joy Neutral Sad 

Anger 16.9 24.6 16.3 23.9 17.6 
Fear 24.0 12.2 23.9 20.5 14.2 
Joy 16.7 16.3 13.5 17.6 14.2 

Neutral 24.3 12.1 58.0 14.0 16.8 
Sad 17.9 14.5 22.3 22.7 14.7 
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Table 8. Cross-emotional segmentation accuracy in 
percentages for misalignment within the admissible 
tolerance t≤20 milliseconds for 3 mixtures per HMM state 

 Test Set 
Training Set Anger Fear Joy Neutral Sad 

Anger 75.8 63.3 76.1 64.3 69.4 
Fear 61.5 79.0 73.3 71.9 77.3 
Joy 78.5 73.1 82.1 72.8 76.4 

Neutral 52.3 75.8 70.3 81.5 77.4 
Sad 71.6 75.5 77.3 69.1 77.9 

 
 

 31 


