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ABSTRACT 

We propose a two-stage phone duration modelling scheme, which can be applied for the improvement 

of prosody modelling in speech synthesis systems. This scheme builds on a number of independent 

feature constructors (FCs) employed in the first stage, and a phone duration model (PDM) which 

operates on an extended feature vector in the second stage. The feature vector, which acts as input to 

the first stage, consists of numerical and non-numerical linguistic features extracted from text. The 

extended feature vector is obtained by appending the phone duration predictions estimated by the FCs 

to the initial feature vector. Experiments on the American-English KED TIMIT and on the Modern 

Greek WCL-1 databases validated the advantage of the proposed two-stage scheme, improving 

prediction accuracy over the best individual predictor, and over a two-stage scheme which just fuses 

the first-stage outputs. Specifically, when compared to the best individual predictor, a relative reduction 

in the mean absolute error and the root mean square error of 3.9% and 3.9% on the KED TIMIT, and of 

4.8% and 4.6% on the WCL-1 database, respectively, is observed. The improved accuracy of phone 

duration modelling contributes to better control of the prosody, and thus the quality of synthetic speech.  

Keywords: Feature construction; phone duration modeling; statistical modeling; text-to-speech 

synthesis 
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1. INTRODUCTION 

In a text-to-speech (TTS) system the accurate modelling and control of prosody leads to high quality 

synthetic speech. Prosody can be regarded as the implicit channel of information in the speech signal 

that conveys information about the expression of emphasis, attitude, assumptions and the affected state 

of the speaker that provides the listener clues to support the recovery of the verbal message [1]. 

Prosody is shaped by the relative level of the fundamental frequency, the intensity and, last but not 

least, by the duration of the pronounced phones [2,3]. The duration of the phones controls the rhythm 

and the tempo of speech [4]. Flattening the prosody in a speech waveform would result in a 

monotonous, neutral and toneless speech, without rhythm, sounding unnatural and unpleasant to the 

listener, and sometimes even scarcely intelligible [5]. Thus, the accurate modelling of the duration of 

the phones is essential in speech synthesis, contributing to the naturalness of synthetic speech and 

consequently to the quality of the speech [1,4,6-12]. 

Various studies concerning phone duration modelling [7-28] have been made over the last few 

decades. The existing phone duration modelling methods are divided into two major categories: rule-

based [12-17] and data-driven methods [7-11,18-25]. The rule-based methods utilise manually 

produced rules which are extracted from experimental studies on large sets of utterances or are based 

on prior knowledge. The extraction of these rules requires linguistic expertise. One of the first and most 

well known attempts in the field of rule-based phone duration modelling is the one proposed in [12] for 

the English language. In this method, rules based on linguistic and phonetic information, such as 

positional and prosodic factors, were used in order to predict the duration of the phones. These rules 

were derived by analysing a phonetically balanced set of sentences. Initially, a set of intrinsic values 

was assigned to each phone which was modified each time according to the extracted rules. Similar 

models were developed in other languages and dialects such as French [13], Brazilian Portuguese [14], 

Swedish [15], German [16] and Greek [17]. The main disadvantage of the rule-based methods is the 

difficulty to represent and manually tune all the linguistic, phonetic and prosodic factors which 

influence the duration of the phones in speech. As a result, it is very difficult to collect all the 

appropriate (or even enough) rules without long-term commitment to this task [29]. Therefore, in order 

to be able to deduce the interaction among these factors and extract these rules, the rule-based duration 

models are restricted to controlled experiments, where only a limited number of contextual factors are 

involved [30]. 
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The creation of large databases made the development of data-driven methods for the task of 

phone duration modelling possible [31]. Data-driven methods overcame the problem of manual rule 

extraction by employing machine learning techniques that automatically produce phonetic rules and 

construct duration models from large speech corpora. The classical approach, which can be 

summarised by the process shown in Fig. 1(a), relies on features extracted from a database which are 

then projected onto the phone duration space through a machine learning method. The main advantage 

of data-driven methods in comparison to rule-based methods is that this process significantly reduces 

the efforts (manual work) of linguists. 

____________________________ 

Figure 1 

____________________________ 

The present work was inspired by studies on processing, combining or transforming an initial 

feature set into a new set of features [32-43]. This procedure, referred to as feature construction, can 

either lead to the reduction of the complexity of the feature space [44] or to the enrichment of the initial 

feature space with additional features [45,46]. Feature construction uses one or more operators 

(Boolean expressions, logical rules, etc.) to combine two or more features of the initial feature set to 

create a new feature, or to transform features of the initial feature set, thus creating new ones. 

In the present work, we propose a phone duration modelling approach attempting to construct more 

accurate models which could lead to an improvement in the quality of synthetic speech. The proposed 

scheme incorporates a feature vector extension (FVE) stage, implemented through a feature 

construction process, illustrated in Fig. 1(b). In contrast to the classical approach (Fig. 1(a)), which 

directly uses feature vectors extracted from data to predict the duration of the phones, the proposed 

two-stage approach incorporating a FVE stage attempts to enrich the initial feature space with newly 

constructed features, and consequently predict the duration of the phones more accurately. This scheme 

builds on a number of feature constructors (FCs) employed in the first stage, and a phone duration 

model (PDM) in the second stage which operates on the extended feature vector. The FCs operate on a 

common input, the initial feature vector, which is constituted of linguistic features extracted only from 

text. The extended feature vector is obtained by appending the phone duration predictions estimated by 

the independent FCs to the initial feature vector. The newly constructed features capture the 

dependency between the initial features and the actual phones’ durations in a manner that depends on 
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the modelling technique and the training strategy employed in each of the FCs. In order for the FVE 

process to be beneficial in terms of overall phone duration prediction accuracy, it is essential that the 

FCs are based on various machine learning techniques. These techniques must rely on different 

assumptions and mapping functions of the feature space to the target space. In order to identify the 

most beneficial algorithm for the PDM, we evaluated ten different linear and non-linear models, which 

are based on linear regression, decision trees, meta-learning algorithms, lazy-learning algorithms, 

support vector machines and neural networks. As far as we are aware, the two-stage phone duration 

modelling scheme investigated in the present work has not been studied previously in the phone 

duration modelling task. 

The remainder of this article is organised as follows. Related work concerning phone duration 

modelling methods and features used in this task are overviewed in Section 2. In Section 3 we outline 

the proposed two-stage phone duration modelling scheme. In Section 4 we briefly describe the phone 

duration modelling algorithms which are used to implement the independent FCs. These algorithms are 

also used along with some additional algorithms for implementing the PDM employed in the second 

stage. In addition, in Section 4 we briefly outline the databases and the experimental protocol followed 

in the numerical evaluation. The evaluation results are presented and discussed in Section 5. Section 6 

concludes this work with a summary of the benefits of the proposed two-stage phone duration 

modelling scheme.  

 

2. RELATED WORK 

2.1 Phone duration modelling methods 

In this section, we briefly report on some of the most frequently and successfully used methods in 

phone duration modelling (cf. Table 1). The linear regression (LR) [4,7,18,20,25] models are based on 

the assumption that there is linear independency among the features which affect phone duration. 

Specifically, the features are weighted in a linear combination creating a prediction function. On the 

other hand, decision tree-based models, and in particular classification and regression tree (CART) 

models [4,7-9,11,18,21,22,25], can represent the dependencies among the features but cannot put 

constraints on linear independency for reliable predictions [7]. Model trees, which is another tree-based 

technique, overcome the drawbacks of each of these two methods, and incorporates both linear 

regression and regression trees [4,7,25].  
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Moreover, Bayesian networks (BN) models have also been applied to the phone duration modelling 

task, incorporating a straightforward representation of the problem domain information. Despite their 

demanding training, it was shown that they make accurate predictions even when unknown values 

occur in some features [8]. In addition, artificial neural networks, such as the feed-forward neural 

networks, have been used in phone duration modelling [19]. Lazy-learning algorithms [18] have also 

been used in this task. In these algorithms the training data are stored during the training phase and a 

distance function is utilising during the prediction phase in order to determine which member of the 

training set is closer to the test instance and predict the phone duration. Furthermore, the sums-of-

products (SOP) method has been used in phone duration modelling. In this approach the prediction of 

phones’ durations is achieved based on a sum of factors and their product terms that affect the duration 

[8,22,23].  

In a recent study [4], the gradient tree boosting (GTB) [47,48] method was applied to this task as an 

alternative to the conventional method using regression trees. GTB is a meta-learning algorithm which 

is based on the construction of multiple regression trees and consequently takes advantage of them. 

Moreover in [25], support vector regression (SVR) was applied to the task of phone duration 

modelling. Finally in the same work [25] a fusion scheme of different phone duration models, 

operating in parallel, was also proposed. Specifically, the predictions from a group of independent 

phone duration models were fed into a machine learning algorithm, which reconciled and fused the 

outputs of these models, improving the accuracy of the system. The data-driven methods provide the 

mechanism for overcoming the time consuming labour which is needed for the manual extraction of 

rules in rule-based phone duration modelling methods.  

______________________ 

Table 1 

______________________ 

 

2.2 Features used in the task of phone duration modelling 

The features used in phone duration modelling are extracted from text and belong to various levels of 

representation of speech, such as the phonetic, phonological, morphological and syntactic levels. Some 

of the most frequently used features in this task are the phone, the number of phones in the syllable, the 

stress of the syllable, the position of the phone in the syllable, the position of the syllable in the word or 
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in the phrase and the part-of-speech of the word. In addition, in some studies [7,10,18] apart from the 

stress feature, more prosodic features were used in the phone duration modelling task, such as the 

accent of the syllable, the type of the syllable, the distance to the next or previous accent, the break 

after the syllable and the distance to the next break or pause. Furthermore, in [4,8-10,18], features 

concerning the phonetic characteristics of the phones have been incorporated in this task such as the 

vowel height, the vowel frontness, the lip rounding, the manner of production and the place of 

articulation, or the number of phones before or after the vowel of the syllable. In other studies 

[8,9,18,19], information concerning the neighbouring instances, such as the next or previous phones, 

the type of the next or previous syllable, the stress or accent of the next or previous syllable, was taken 

into consideration. In the present work we take advantage of these previous studies and use a large 

feature vector that includes all of the above mentioned features. 

 

3. THE TWO-STAGE PHONE DURATION MODELLING SCHEME 

The two-stage phone duration modelling scheme is based on the use of multiple independent FCs in the 

first stage and a single PDM in the second stage, which operates on an extended feature vector. The 

phone duration predictions estimated by the independent FCs in the fisrt stage, are appended to the 

initial feature vector, creating the extended feature vector which is used by the PDM in the second 

stage predicting the duration of the phones. This two-stage scheme is based on the following steps: 

(i) the independent FCs demonstrate different performances in the phone duration modelling task, 

i.e. they err in a different manner. In order for this statement to be valid, we specify two criteria 

for selecting the PDMs that will serve as FCs: (a) the candidate models have to demonstrate 

state-of-the-art performance and/or to have the advantage of a specific category of units, and (b) 

the input feature vector, the machine learning technique or the training strategy have to be 

different from the other models that have already been selected for the first stage.  

(ii) the proposed two-stage scheme is expected to offer advantageous phone duration prediction 

accuracy, when compared to the best individual model, due to the benefits of fusion. These 

benefits are based on the known advantage that fusion of scores of multiple predictors offers 

[49-53].  

(iii) the proposed two-stage scheme with FVE would improve the phone duration prediction 

accuracy when compared to a baseline two-stage scheme which just fuses the outputs of the first 
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stage predictors, i.e. without implementing FVE, as proposed in [25]. This advantage should 

come from extending the initial feature vector with the newly constructed features. These 

features convey information about the mapping of the initial feature space to the target “phone 

duration” space, since they offer independent projections between these two spaces. These 

projections, although they might be considered as noisy, error-prone, imperfect and correlated 

with the initial feature vector, are expected to facilitate the PDM in the second stage. This is due 

to their different perspective and to the independent mapping between the input and output, 

which assists in correcting anomalies.  

In Fig. 2, we present the block diagram of the proposed two-stage phone duration modelling 

scheme. Following the criteria formulated in (i), we assume the availability of numerous independent 

PDMs operating as FCs. As mentioned previously, the FCs should be implemented with different 

machine learning techniques or trained with different strategies and could operate on different subsets 

of features, which represent the data in a complementary way or on a common input feature vector. As 

presented in the figure, in the following we consider the case where all the FCs operate on a common 

input. This feature vector is composed of linguistic features extracted only from text (cf. Section 4.3) 

since text is the input in TTS systems. In the following subsections we describe the FCs and the PDMs 

in detail. 

__________________________ 

Figure 2  

____________________________ 

 

3.1 Feature constructors (FCs) 

The training of the proposed two-stage phone duration modelling scheme depends on two non-

overlapping datasets: the training and the development sets. Initially, the independent FCs are trained 

using the training dataset, and consequently the trained FCs are used to process the development 

dataset in order to produce new features. These newly constructed features, which are in fact phone 

duration predictions, are appended to the initial feature vector, which contains linguistic features of 

several speech representation levels, e.g. phonetic, phonological and morphosyntactic. The composite 

feature vector obtained after this merging, referred to as the extended feature vector, is employed for 

the training of the PDM in the second stage of the scheme.  
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The training of the FCs can be formalised as follows: Let us define a set of N independent FCs, 

which operate on a common input. Furthermore, let us define a M-dimensional feature vector, p
jx , 

which consists of numeric and non-numeric features. Here, the subscript and superscript indexes of p
jx  

stand for the instance j of training data for phone p. The feature vectors, extracted from the training 

dataset, are used together to train each FC. The trained FCs are then used to process the data of the 

development dataset and the outcome of this processing are phone duration predictions, 

( )( ), , ,n p n p
j p j ny B b p= x  which serve as the newly constructed features. Here, each of the N outputs, 

,n p
jy  (n=1…N, where n is the index of each FC) is a real number corresponding to predicted phone 

duration value, while n
pB  and ( )nb p  stand for the trained FC and the phone-dependent parameters of 

the nth FC, for phone p, respectively. The outputs of the FCs are concatenated to form the N-

dimensional feature vector 1, , ,,..., ,...,p p n p N p
j j j jy y y =  y , which is next appended to the initial feature 

vector, p
jx , to obtain the extended feature vector acting as input to the second stage.  

 

3.2 Phone duration model (PDM) in the second stage 

The PDM in the second stage is trained with the extended feature vectors obtained after the processing 

of the development dataset by the FCs in the fist stage. In detail, the initial feature vector, p
jx , and the 

outputs of the N FCs, p
jy , are concatenated to form the extended feature vector ,

Tp p p
j j j =  z x y with 

dimensionality L M N= + . The extended feature vector p
jz  together with the ground truth labels from 

the database are used for training the PDM, denoted as DMF . Once the DMF  is trained, the two-stage 

phone duration modelling scheme is ready for operation. 

During run-time operation of the two-stage scheme (cf. Fig. 2), the input data are processed as 

follows: An M-dimensional input feature vector p
jx , for the jth instance, appears as input to all the FCs. 

The outputs of the FCs, i.e. the phone duration predictions, ,n p
jy , are the newly constructed features. 

Consequently, they are appended to the initial feature vector p
jx  used in the first stage, and the L-

dimensional extended feature vector obtained from this, is fed as input into the PDM in the second 

stage. The output of the model DMF  is the final phone duration prediction, ( )( ),=p p p
j DM j no F f pz , 
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where p
DMF  is the constructed duration model for phone p, and ( )nf p  are the phone-dependent 

parameters of DMF . 

 

4. EXPERIMENTAL SETUP 

In order to investigate the practical usefulness of the proposed two-stage scheme, we trained and 

evaluated a number of independent models, which were employed to operate as FCs in the first stage. 

Furthermore we investigated various implementations of the PDM in the second stage. The machine 

learning algorithms used in the implementation of the FCs and PDM are described in the following two 

subsections. 

 

4.1 Feature construction algorithms 

We considered eight independent phone duration modelling methods for use as FCs, which are well 

known and have been successfully used over the years in different modelling tasks. These are: 

(i) linear regression (LR) [54] using Akaike’s Information Criterion (AIC) [55] in a backward 

stepwise selection (BSS) [56] procedure to eliminate unnecessary variables of the training 

data. The basic idea of the linear regression algorithm is to express the prediction values (i.e. 

the phones’ durations) as a linear combination of the features with weights which are 

determined during the training phase of the algorithm.  

(ii) two decision trees: a model tree (m5p) and a regression tree (m5pR) [57,58]. Decision trees are 

predictive models that create a mapping procedure between observations about an item and the 

conclusions about its target value. In these tree structures, leaves represent target values and 

branches represent conjunctions of features that lead to these target values. The main 

difference between these two algorithms is that a model tree utilises a linear regression 

function on each leaf, and alternatively a regression tree utilises a constant value on each leaf 

node [57,58]. 

(iii) two additive regression algorithms (Add. Regr.) [48] and two bagging (Bagg.) algorithms [59] 

were used, by utilising two different regression trees (m5pR and REPTrees) [57,58,60] as base 

classifiers in each case. The last four algorithms are meta-learning algorithms [61] using 

regression trees as base classifiers.  
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During the training procedure, in each iteration, the additive regression algorithm builds a 

regression tree using the residuals of the previous tree as training data. Since each tree added 

to the model fits the training data more closely, this procedure is prone to overfitting. In order 

to avoid overfitting of the model, instead of subtracting a model’s entire prediction to generate 

the target values (residuals) for the next model, a constant factor (shrinkage) was used. This 

factor, taking values between 0 and 1, was used to shrink the predictions by multiplying them 

with it before subtracting. In this way the fitting of the model to the residuals is reduced, 

decreasing the chance of overfitting [54]. The regression trees are combined together creating 

the final prediction function. In these two cases of additive regression meta-classification the 

shrinkage parameter, ν, indicating the learning rate, was set equal to 0.5. Furthermore the 

number of the regression trees, rt-num, which were trained iteratively using the residuals of 

the tree of the previous iteration was set equal to 10. The values of both of these parameters 

were selected after a number of grid search experiments (ν={0.1, 0.3, 0.5, 0.7, 0.9}, rt-

num={5, 10, 15, 20}) on a randomly selected subset of the training dataset, representing 20% 

of the size of the full training dataset.  

In the bagging algorithm, the dataset is split into multi subsets utilising one regression tree 

for each one of them. The final prediction value is the average of the values predicted from 

each regression tree. Also in this case, the number of the regression trees, rt-num, which were 

trained independently using each subset of the split dataset was set equal to 10 after grid 

search experiments (rt-num={5, 10, 15, 20}) on the randomly selected subset of the training 

dataset mentioned above.  

(iv) Finally, the support vector regression (SVR) model [62] was used, which implements the 

sequential minimal optimisation (SMO) algorithm for training a support vector classifier 

(SMOreg) [63]. To this end, various kernel functions have been used in SVR, such as 

polynomial, radial basis function (RBF), Gaussian functions, etc. In our experiments the RBF 

kernel was used as the mapping function [64]. The basic idea governing the SVR is the 

production of a model that can be expressed through support vectors. A linear regression 

function is used to approximate the training instances by minimising the prediction error. A 

user-specified parameter ε defines a tube around the regression function. In this tube the errors 

are ignored. The parameter ε controls how closely the function will fit the training data. The 
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parameter C is the penalty for exceeding the allowed deviation defined by ε. The larger the C, 

the more closely the linear regression function can fit the data [54]. The ε and C parameters, 

where 0ε ≥  and 0C > , were set equal to 10-3 and 10-1 respectively, after a grid search 

(ε={10-1, 10-2, …, 10-5}, C={0.05, 0.1, 0.3, 0.5, 0.7, 1.0, 10, 100}) on the randomly selected 

subset of the training dataset mentioned above. 

Our motivation to select these machine learning algorithms was based on previous research 

[4,7,20,21,24], where these algorithms were reported to be successful for phone duration modelling. 

Along with this task, many of these algorithms have also been used in syllable duration modelling 

tasks, supporting different languages and databases. Once these eight models are built with different 

machine learning techniques and have different training strategies, they will conform to the criteria 

formulated in Section 3. 

 

4.2 Phone duration algorithms in the second stage 

In order to select the most advantageous algorithm for the PDM in the second stage, we experimented 

on ten different machine learning algorithms. These included the eight algorithms outlined in Section 

4.1, along with (i) the radial basis function neural network (RBFNN) with Gaussian kernel [65], and (ii) 

the instance-based algorithm (IBK) [66] which is a k-nearest neighbours classifier. 

The RBFNN implements a Gaussian radial basis function network, deriving the centres and widths 

of hidden units using k-means [67] and combining the outputs obtained from the hidden layer using 

logistic regression if the class is nominal, and linear regression if it is numeric. The activations of the 

basis functions are normalised to sum to unity before they are fed into the linear models. The number 

of clusters and the minimum standard deviation for the clusters are the free parameters of the algorithm 

[54]. The number of clusters, num-cl, to be generated by the k-means algorithm and the minimum 

standard deviation, cl-std, for the clusters were set equal to 135 and 10-2, respectively. These 

parameters were determined by a grid search (num-cl={5,10, …, 200}, cl-std={0.001, 0.01, 0.1, 0.5}) 

on the randomly selected subset of the training dataset representing 20% of the size of the full training 

dataset.  

The IBK is an instance-based algorithm [66], which belongs to the lazy-learning algorithms. In the 

training phase it stores the training instances verbatim, and in the prediction phase it searches for the 

instance that most closely resembles the target instance in order to predict the target value. This is 
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calculated through the use of a distance function. In the present work, we used the linear nearest 

neighbours search algorithm with Euclidean distance as the distance function. Leave-one-out cross-

validation was used to select the best k value, with an upper limit of 35 nearest neighbours. The 

predictions from nearest neighbours were weighted according to the inverse distance.  

 

4.3 Databases and feature set 

The evaluation for the phone duration modelling task was carried out on two databases: the American 

English speech database, CSTR US KED TIMIT [68], and the Modern Greek speech prosodic 

database, WCL-1 [69]. The KED TIMIT database consists of 453 phonetically balanced sentences 

(3400 words approximately) uttered by a Native American male speaker. The WCL-1 prosodic 

database consists of 5500 words distributed in 500 paragraphs, each one of which may be a single 

word, a short or long sentence, or a sequence of sentences uttered by a female professional radio 

actress. The corpus includes 390 declarative sentences, 44 exclamation sentences, 36 decision 

questions and 24 “wh” questions.  

For the experiments with the KED TIMIT database we made use of the phone set provided with the 

database [68] which consists of 44 phones. For the experiments using the WCL-1 database we made 

use of the phone set provided with the database [69] consisting of 34 phones. In all the experiments 

with both databases, the manually labelled durations of the phones were used as the ground truth 

reference durations.  

In the present work, we consider all the features which have been reported [4,7-10,18-29] to have 

been used successfully in the task of phone duration modelling. Since the input of a TTS system is text, 

the initial feature vector is composed of linguistic features extracted only from text. In particular, from 

each utterance of the database, for each instance of the utterance which corresponds to a phone, we 

computed 33 features. The temporal neighbours of some of these features, defined on the level of the 

respective feature, i.e. phone-level, syllable-level and word-level, were also used. The features involved 

in the initial feature vector are as follows: 

(i) eight phonetic features: the phone class (consonants/non-consonants), the phone types (vowels, 

diphthongs, schwa, consonants), the vowel height (high, middle or low), the vowel frontness 

(front, central or back), the lip rounding (rounded/unrounded), the manner of production 

(plosive, fricative, affricate, approximant, lateral, nasal), the place of articulation (labial, labio-
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dental, dental, alveolar, palatal, velar, glottal), and the consonant voicing. Along with the 

aforementioned features, which concern each current instance, the corresponding information 

concerning the two previous and the two next instances (temporal context information) was also 

used.  

(ii) three phone-level features: the phone name with the temporal context information of the 

neighbouring instances (previous, next), the position of the phone in the syllable and the onset-

coda type (onset: if the specific phone is before the vowel in the syllable, coda: if the specific 

phone is the vowel or if it is after the vowel in the syllable). 

(iii) thirteen syllable-level features: the position type of the syllable (single, initial, middle or final) 

with the information of the neighbouring instances (previous, next) and the number of all the 

syllables. Furthermore, the number of the accented syllables and the number of the stressed 

syllables since the last and to the next phrase break (i.e. the break index tier of ToBI [70] with 

values, 0, 1, 2, 3, 4,) were included. Moreover, the syllables’ onset-coda size (the number of 

phones before and after the vowel of the syllable) with the information of previous and next 

instances, the onset-coda type (if the consonant before and after the vowel in the syllable is 

voiced or unvoiced), along with the temporal context information of previous and next instances, 

were used as syllable-level features. Finally, the position of the syllable in the word and the 

onset-coda consonant type (the manner of production of the consonant before and after the 

vowel in the syllable) were included.  

(iv) two word-level features: the part-of-speech (noun, verb, adjective, etc.) and the number of 

syllables of the word.  

(v) one phrase-level feature: the syllable break (the phrase break after the syllable) with the 

temporal context information of the neighbouring (two previous, two next) instances. The 

syllable break feature is implemented based on the break index tier of ToBI (0, 1, 2, 3, 4). 

(vi) six accentual features: the ToBI [70] accents and boundary tones with the temporal context 

information of the neighbouring (previous, next) instances and the last-next accent (the number 

of the syllables since the last and to the next accented syllable) were used. Additionally, we 

included the stressed-unstressed syllable feature (whether or not the syllable is stressed) and the 

accented-unaccented syllable feature (whether or not the syllable is accented) with the 

information of the neighbouring (two previous, two next) instances.  
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The overall size of the initial feature vector is 93, including the aforementioned features and their 

temporal context information as reported above (one or two previous and next instances on the level of 

the respective feature, phone-level, syllable-level and word-level).  

 

4.4 Experimental protocol 

For the purpose of comparison, we evaluated the phone duration prediction accuracy of the proposed 

two-stage scheme with FVE in contrast with (i) the accuracy of the best independent FC method, and 

(ii) the fusion scheme proposed in [25], which in this work is referred to as fusion of the constructed 

features (FCF). The FCF scheme is equivalent to a direct fusion of the predictions of the FCs, since 

only the outputs of the FCs compose the feature vectors used as input for the PDM in the second stage. 

This scheme will be considered as the baseline to which the performance of the proposed FVE scheme 

is compared.  

In all experiments we followed an experimental protocol based on 10-fold cross-validation. 

Specifically, in each fold the training data were split in two non-overlapping portions: the training 

dataset and the development dataset. The training dataset, amounting to approximately 60% of the full 

dataset, was utilised in the training of the first-stage models, the FCs, and the development dataset, 

amounting to approximately 30% of the full dataset, was used in the training of the PDM in the second 

stage. Furthermore, the test dataset, amounting to approximately 10% of the full dataset, was used for 

evaluating the performance of the eight individual FCs, as well as the overall performance of the two-

stage scheme.  

 

4.5 Performance metrics 

Phone duration modelling, which mainly relies on regression algorithms, suffers from specific types of 

errors. The most commonly occurring type of error is the bias (systematic) error [71]. This error is a 

constant shift of the predicted phones’ durations from the real ones and can be estimated as the 

difference between the real and predicted mean durations. Other prediction errors that may occur in the 

phone duration modelling task are small miss-predictions and gross errors (outliers) [71]. Small miss-

predictions in phone duration, i.e. less than 20 milliseconds, do not significantly affect the quality of 

the synthetic speech signal. In contrast to these, the other errors degrade the quality of synthetic speech 

[72].  
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The experimental results are reported in terms of the two most commonly used figures of merit, 

namely the mean absolute error (MAE) and the root mean squared error (RMSE), between the 

predicted duration and the actual (reference) duration of each phone [4-6,8,9,11,22]. Due to the 

squaring of values in the RMSE the large errors (outliers) are weighted heavily, which makes this 

figure of metric more sensitive to outliers than the MAE [54]. This sensitivity of the RMSE makes it a 

more illustrative measurement concerning the gross errors, when compared to the MAE. 

 

5. EXPERIMENTAL RESULTS 

Three different ways of grouping the instances (i.e. the phones) of the database were considered, on the 

basis of (i) vowels/consonants categorisation of the phones, (ii) phonetic categories of the consonants 

and (iii) individual phones. These divisions of the data offer different degrees of detail and allow us to 

verify the reasoning behind our proposed scheme in various conditions. In brief, the main concept (cf. 

Section 3) was that (i) independent phone duration predictors implemented through different machine 

learning algorithms perform differently in different conditions and (ii) independent phone duration 

predictors can serve as FCs, which contribute to an improvement in overall phone duration prediction 

accuracy when they are involved in the proposed FVE scheme. 

In the following subsections we present the results of the experimental evaluation of the accuracy 

of the eight individual FCs described in Section 4.1. Afterwards, these models are used in the first stage 

of the proposed two-stage scheme constructing the new features which are subsequently used for the 

FVE. Following which, we present results from the evaluation of the applicability of ten different 

phone duration modelling algorithms (see Section 4.2), employed in the second stage of the proposed 

two-stage phone duration prediction scheme. 

 

5.1 Classical approach for phone duration modelling  

In order to evaluate the accuracy of various phone duration prediction methods outlined in Section 4.1, 

which implement the classical approach for phone duration modelling (cf. Fig. 1(a)), we examined the 

performance of the eight FCs on both databases using the initial feature set described in Section 4.3. 

The RMSE, the MAE and the standard deviation of the absolute error (STD of AE) for all the FCs 

specified in Section 4.1 are shown in Table 2, where Table 2(a) presents the results obtained on the 

KED TIMIT database and Table 2(b) on the WCL-1 database. The results of the best performing 
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model, among the eight FCs, are in bold. As it is shown in the table, the support vector machine (SVM) 

models, implemented with the SMO regression (SMOreg) model, outperform all the other models on 

both databases. Specifically, on the KED TIMIT database the SMOreg model outperforms the second-

best model, which is the meta-classifier additive regression using m5pR (Add. Regr. m5pR) model, by 

5.5% and 3.7% in terms of MAE and RMSE, respectively. On the WCL-1 database the SMOreg model 

outperforms the second-best model, LR, by 6.8% and 3.7% in terms of MAE and RMSE, respectively. 

This advantage of the SMOreg model is explained by the ability of SVMs to cope better with high-

dimensional feature space [73,74], when compared to the other algorithms under consideration. 

______________________ 

Table 2 

______________________ 

In addition, in Table 3 we present the performance of the same eight FCs on the KED TIMIT 

(Table 3(a)) and the WCL-1 databases (Table 3(b)) for the case of vowel/consonant division and per 

phonetic category of the consonants. Again, the SMOreg model demonstrated the lowest RMSE on 

both databases, except for one case: the Affricates on KED TIMIT, where the lowest RMSE is 

observed for the meta-classifier additive regression using the REPTrees, where the SMOreg model has 

the second-best performance.  

______________________ 

Table 3 

______________________ 

In Table 4 the results of the FCs are analysed to the level of individual phones. Specifically, Table 

4(a) reports the RMSE for the 44 phone set on the KED TIMIT database and Table 4(b) for the 34 

phone set on the WCL-1 database. Again the results for the best performing algorithm are in bold. As 

shown in the tables, despite the fact that the SMOreg models demonstrate the highest overall 

performance on both databases (refer to Table 2), in one phonetic category (Affricates in Table 3(a)) 

and in some cases of individual phones (Table 4) other models offer a higher phone duration prediction 

accuracy. For instance, on the KED TIMIT database, for the phone ch, the LR model expressed the best 

performance, while for the phone ay, the m5p model offers the best performance (refer to Table 4 (a)). 

These two specific cases (and other similar ones reported in the tables) support the motivation behind 
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our two-stage scheme, that different algorithms perform better in different phonetic categories, and 

therefore can improve the overall accuracy of phone duration modelling.  

______________________ 

Table 4 

______________________ 

5.2 Two-stage phone duration modelling with feature construction and feature vector 

extension 

In this section, we investigate the accuracy of the proposed two-stage phone duration modelling 

scheme with FVE. This scheme is compared to the baseline scheme, i.e. FCF, where the initial feature 

vector is not propagated to the second stage and only the outputs of the FCs, which are the newly 

constructed features, are used as input to the PDM in the second stage. In the following we consider ten 

different implementations of the PDM in the second stage, and evaluate their performance both with 

and without FVE.  

In Table 5, we present the results for the ten algorithms outlined in Section 4.2, which are the LR, 

the m5p model tree, the m5pR regression tree, the two additive regression algorithms based on m5pR 

and REPTrees (Add. Regr. m5pR and Add. Regr. REPTrees), the two bagging algorithms based on 

m5pR and REPTrees (Bagg. m5pR and Bagg. REPTrees), the instance-based learning (IBK), the 

support vector regression (SVR) with sequential minimal optimisation (SMO) training referred here as 

SMOreg, and the radial basis function neural network (RBFNN). In all cases the best results are shown 

in bold. Again for reasons of comparison, in Table 5 we also present the experimental results for the 

best individual FC (SMOreg).  

______________________ 

Table 5 

______________________ 

As identified in Table 5, the baseline FCF scheme, implemented with the SMOreg model, 

outperformed the best individual FC, the SMOreg, by 1.9% and 2% in terms of MAE and RMSE on the 

KED TIMIT database (Table 5(a)), and respectively by 2.6% and 1.8% on the WCL-1 database (Table 

5(b)). The proposed FVE scheme outperformed the best FC (SMOreg) on both the KED TIMIT and 

WCL-1 databases only when the PDM in the second-stage is implemented with SMOreg. In terms of 
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MAE and RMSE, the benefit of the FVE is shown by the accuracy improvement of 3.9% and 3.9% on 

the KED TIMIT database and of 4.8% and 4.6% on the WCL-1 database, respectively.  

Moreover, it should be mentioned that the proposed FVE scheme, apart from reducing the overall 

error, also reduces the deviation of the outliers. In the case when the error distribution is Gaussian, the 

reduction in the standard deviation of the absolute error is correlated to the reduction of the outliers 

with respect to the model. As the results in Table 5 show, the proposed FVE scheme reduced the STD 

of AE in comparison to the best FC, the SMOreg, by approximately 3.9% on the KED TIMIT database 

and by approximately 2.5% on the WCL-1 database, respectively. 

As already stated, the FVE scheme outperforms the best individual FC, SMOreg, only when the 

PDM in the second-stage is implemented with SMOreg. This observation can be reasoned with the high 

dimensionality of the input feature vector (93 initial features + 8 newly constructed = 103 dimensions). 

This is because the other machine learning techniques, when employed as PDM in the second stage, do 

not build robust models from the available training data due to the curse of dimensionality. Since the 

support vector machines do not suffer from this problem they performed better than any of the other 

techniques evaluated here.  

Finally, in order to investigate whether the differences in the accuracies between the best 

individual FC and the proposed FVE scheme, and between the baseline (FCF) and the proposed FVE 

scheme, are statistically significant, we performed the Wilcoxon test [75]. On both databases, the 

Wilcoxon test showed that these differences are statistically significant, with a significance level of p-

value < 0.05. Thus, the proposed FVE scheme can be regarded as advantageous when compared to both 

the best individual FC and to the baseline FCF scheme. 

 

5.3 Additional experiments with feature ranking 

For further investigation of the effectiveness of the proposed FVE scheme, a subset selection on the 

extended feature vector was performed. For that purpose, we firstly performed feature ranking with the 

Recursive Elimination of Features (RELIEF) algorithm [76], and subsequently selected the top-20, top-

50, top-80 ranked features. This resulted in three subsets of the extended feature vector, which in the 

following we refer to as Sets 20, 50 and 80, respectively. The entire extended feature vector is referred 

to as the full feature set. 
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The feature selection was performed on a randomly selected subset, corresponding to 40% of the 

development dataset. The eight constructed features obtained from the FCs (evaluated in Section 5.1), 

were ranked in the top-13 features on KED TIMIT, and in the top-18 on the WCL-1 database. Thus, the 

feature ranking results confirm the importance of the newly constructed features and gives an 

explanation for their contribution to the reduction of the error rates, when they are used as an extension 

of the initial feature vector. 

______________________ 

Table 6 

______________________ 

In Table 6, we present the results for the proposed FVE scheme, when the second stage is fed with 

the feature subsets 20, 50 and 80. Here Table 6(a) presents the results on the KED TIMIT database and 

Table 6(b) on the WCL-1 database. For reasons of comparison, in the last three columns of Table 6, we 

duplicate the experimental results for the full feature set. As can be seen in the table, in the case of Set 

20, where only the top-20 features of the full feature set are fed to the second stage, the proposed FVE 

scheme with SMOreg in the second stage outperforms the best FC, the SMOreg model, by 2.7% and 

2.7% in terms of MAE and RMSE respectively on the KED TIMIT database, and by 3% and 2.1% 

respectively on the WCL-1 database. However, the performance on Set 20 is worse than that obtained 

on the full feature set. The same is valid for Set 50 and Set 80. In the case of Set 50, where the top-50 

features are fed to the second stage, once again only the proposed FVE scheme outperforms the best FC 

by 3.4% and 3.4% in terms of MAE and RMSE respectively on the KED TIMIT database, and by 3.6% 

and 3.3% respectively on the WCL-1 database. Likewise, for the Set 80, the proposed FVE scheme 

outperforms the best FC by 3.9% and 3.7% in terms of MAE and RMSE respectively on KED TIMIT, 

and by 4.4% and 4.1% respectively on the WCL-1 database.  

Further analysing the results shown in Table 6, it should be noted that the models based on the IBK 

and the RBFNN techniques showed a noticeable drop in their accuracy as the number of the features in 

the feature vector was increased (from Set 20 to the full feature set), increasing the MAE by 10.3% and 

7.5% on the KED TIMIT and WCL-1 databases, respectively, for IBK model, and by 28.9% and 

18.7%, respectively, for the RBFNN model. This decline in the phone duration prediction accuracy 

shows that the IBK [77] and RBFNN [78] models suffer from the curse of dimensionality [79], and thus 
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they do not handle well the increased dimensionality of the feature vector, given the predefined amount 

of the training data.  

Furthermore, it is shown that for all the other machine learning techniques evaluated here, the 

increase in the feature vector dimensionality (from Set 20 to the full feature set) showed no significant 

improvement in the accuracy of the PDMs and in no case did any model outperform the best individual 

FC, SMOreg.  

In conclusion, we can summarise that the experimental results confirmed the advantages of the 

proposed two-stage phone duration modelling scheme, which incorporates a number of FCs in the first 

stage and a SVM-based PDM in the second stage that operate on an extended feature vector. The 

proposed scheme contributes to a significant gain in accuracy, when compared (i) to the best individual 

FC, and (ii) to the case of simple fusion of the outputs of the FCs, i.e. without extension of the features. 

Finally, ranking the relevance of the individual features in the extended feature vector demonstrated the 

high relative importance of the newly constructed features, which explains the observed accuracy gain. 

 

6. CONCLUSION 

We studied a two-stage phone duration modelling scheme, which relies on a number of independent 

feature constructors employed in the first stage and a phone duration model in the second stage, 

operating on an extended feature vector. This scheme takes advantage of the fact that different 

prediction algorithms operating on a common input can construct complementary features, which when 

appended to the initial feature vector contribute to the improvement of the overall phone duration 

prediction accuracy. The support vector regression was found to be the most appropriate 

implementation for the second-stage phone duration model in the proposed scheme. Specifically, the 

SMO regression model outperformed the best feature constructor by 3.9% and 3.9% in terms of mean 

absolute error and root mean square error, respectively, on the KED TIMIT database and by 4.8% and 

4.6%, respectively, on the WCL-1 database. The extended feature vector, consisting of the initial 

feature vector and the newly constructed features, was found to be advantageous over the three smaller 

subsets. The proposed two-stage scheme improved the accuracy of phone duration modelling, 

contributing to better control of the prosody. 
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(a)  
 

(b)  

Fig. 1.  Phone duration prediction: (a) the classical approach, (b) two-stage approach involving an 

intermediate feature vector extension step 
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Fig. 2.  Block diagram of the two-stage phone duration modelling scheme, which involves feature construction 

and feature vector extension  
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Table 1.  Phone duration modelling methods studied in the literature. 
Method Study Database Error Metric (ms) Vowels Consonants 
LR [4] American English male RMSE 25.2 21.4 
  Japanese male RMSE 16.6 14.9 
  Japanese female RMSE 14.3 15.4 
 [7] RP English male Standard deviation 20.3 
 [18] Modern Greek female RMSE 25.5 
 [25] American English male RMSE 22.89 
  Modern Greek female RMSE  26.19 
CART [4] American English male RMSE 26.4 21.5 
  Japanese male RMSE 17.2 14.2 
  Japanese female RMSE 14.9 13.9 
 [7] RP English male Standard deviation 19.6 
 [8] RP English male RMSE 23.0 20.0 
  RP English female RMSE 26.0 21.0 
  American English male RMSE 27.0 24.0 
 [9] Indian Hindi RMSE 27.1 
  Indian Telugu RMSE 22.7 
 [11] Korean RMSE 22.0 
 [18] Modern Greek female RMSE 26.0 
 [22] Korean RMSE 27.5 24.2 
 [25] American English male RMSE 22.72 
  Modern Greek female RMSE  27.71 
Model Trees [4] American English male RMSE 25.4 21.1 
  Japanese male RMSE 16.5 13.6 
  Japanese female RMSE 14.3 12.9 
 [7] RP English male Standard deviation 19.4 
 [25] American English male RMSE 22.23 
  Modern Greek female RMSE  27.17 
BN [8] RP English male RMSE 1.5 4.1 
  RP English female RMSE 1.5 3.5 
  American English male RMSE 1.7 3.6 
FFNN [19] European Portuguese Standard deviation 19.5 
IBK [18] Modern Greek female RMSE 27.5 
SoP [8] RP English male RMSE 28.0 26.0 
  RP English female RMSE 25.0 25.0 
  American English male RMSE 32.0 33.0 
 [22] Korean RMSE 32.1 28.9 
Add. Regr. Trees [4] American English male RMSE 24.5 20.2 
  Japanese male RMSE 16.1 12.8 
  Japanese female RMSE 13.9 12.1 
 [25] American English male RMSE 21.35 
  Modern Greek female RMSE  26.38 
Bagg. Trees [4] American English male RMSE 25.8 20.9 
  Japanese male RMSE 16.7 13.9 
  Japanese female RMSE 14.5 13.5 
 [25] American English male RMSE 22.14 
  Modern Greek female RMSE  26.72 
SVR [25] American English male RMSE 20.56 
  Modern Greek female RMSE  25.21 
Fusion Scheme [25] American English male RMSE 20.14 
  Modern Greek female  RMSE  24.76 
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Table 2.  Mean Absolute Error (MAE), standard deviation of absolute 
error (STD of AE) and Root Mean Square Error (RMSE) in 
milliseconds for the eight feature constructors (FCs) on: (a) the 
KED TIMIT database, and (b) the WCL-1 database. Bold fonts 
indicate the best model among the eight FCs. 

(a) results on the KED TIMIT database 

FC algorithms MAE (ms) STD of AE (ms) RMSE (ms) 
SMOreg 14.95 14.11 20.56 
Add. Regr. m5pR 15.82 14.34 21.35 
Add. Regr.REPTrees 16.29 15.06 22.19 
Bagg. m5pR 16.51 14.76 22.14 
m5p 16.62 14.77 22.23 
Bagg. REPTrees 16.69 15.89 23.04 
m5pR 16.93 15.16 22.72 
LR 17.15 15.16 22.89 

 

(b) results on the WCL-1 database 
 

FC algorithms MAE (ms) STD of AE (ms) RMSE (ms) 
SMOreg 16.78 18.81 25.21 
LR 18.00 19.02 26.19 
Add. Regr.REPTrees 18.08 19.97 26.94 
Add. Regr.m5pR 18.13 19.16 26.38 
Bagg. m5pR 18.14 19.63 26.72 
m5p 18.31 20.08 27.17 
Bagg. REPTrees 18.93 20.32 27.77 
m5pR 19.07 20.10 27.71 
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Table 3.  Root Mean Square Error in milliseconds per phonetic category for the 
eight feature constructors (FCs) on: (a) the KED TIMIT database, and 
(b) the WCL-1 database. Bold fonts indicate the best model for each 
phonetic category among the eight FCs. 

(a) results on the KED TIMIT database 

Clustering LR m5p m5pR 
Add. Reg. Bagg. 

SMOreg 
m5pR REPTrees m5pR REPTrees 

Vowel 24.56 24.18 25.46 23.67 24.87 24.78 26.34 22.72 
Consonant 21.72 20.86 20.74 19.69 20.24 20.24 20.60 19.02 

Affricate 22.44 24.41 23.48 22.86 21.72 22.96 23.34 21.88 
Approximant 22.23 22.44 23.09 21.77 22.56 22.59 24.07 20.42 
Fricative 22.51 21.67 21.10 20.19 20.69 20.63 20.96 19.63 
Lateral 21.16 20.98 21.18 20.29 21.16 20.52 21.89 19.77 
Nasal 18.59 17.88 17.80 17.11 16.94 17.28 17.57 16.53 
Stop 23.39 22.07 21.62 20.26 20.97 21.04 20.80 19.61 

 
(b) results on the WCL-1 database 

Clustering LR m5p m5pR 
Add. Regr. Bagg. 

SMOreg 
m5pR REPTrees m5pR REPTrees 

Vowel 24.22 24.68 26.04 24.51 25.18 24.91 26.62 23.12 
Consonant 27.86 29.25 29.13 27.97 28.44 28.27 28.77 26.57 

Fricative 25.67 27.04 26.93 25.79 26.23 25.57 26.45 23.95 
Liquid 19.46 19.19 19.55 18.84 17.83 18.47 18.02 16.38 
Nasal 22.44 22.94 23.11 22.27 22.15 22.18 22.27 20.62 
Stop 34.09 36.22 35.88 34.46 35.46 35.35 35.98 33.53 
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Table 4 (a).  Root Mean Square Error in milliseconds per phone for the eight 
feature constructors (FCs) on the KED TIMIT database. Bold 
fonts indicate the best model for each phone among the eight FCs. 

Phones LR m5p m5pR 
Add. Regr. Bagg. 

SMOreg 
m5pR REPTrees m5pR REPTrees 

aa 27.81 25.57 28.01 24.57 27.27 26.71 29.22 25.64 
ae 31.40 30.97 31.67 29.75 31.19 31.64 33.13 29.23 
ah 19.67 22.34 22.27 20.31 21.50 20.88 22.27 19.38 
ao 32.79 29.21 32.95 30.54 32.11 32.66 33.29 29.65 
aw 33.46 32.89 37.35 34.55 38.49 37.25 40.02 33.07 
ax 16.10 15.66 16.06 15.16 15.56 15.54 15.93 14.80 
ay 37.12 32.78 38.37 34.43 34.04 36.64 37.23 34.51 
b 23.89 22.36 23.42 22.24 23.03 22.52 21.19 21.33 
ch 19.69 23.34 21.17 20.48 20.43 19.89 22.36 20.57 
d 20.77 19.36 19.66 19.12 20.05 19.32 20.54 18.26 
dh 17.56 16.03 15.72 15.19 14.57 15.16 15.30 15.14 
dx 11.08 10.38 11.30 9.99 8.78 9.54 8.86 9.63 
eh 20.94 20.39 22.50 21.41 21.44 21.32 22.61 19.05 
el 21.39 27.24 21.52 20.79 18.98 19.97 21.05 22.32 
em 13.61 15.31 10.51 10.44 10.13 10.28 13.99 11.58 
en 22.26 24.60 25.01 23.18 20.67 22.44 21.80 21.01 
er 28.41 29.28 28.73 27.09 27.77 28.15 29.87 25.29 
ey 27.76 26.99 29.43 28.12 29.90 28.72 31.36 26.73 
f 22.84 23.90 21.52 20.09 21.05 21.08 22.43 18.91 
g 18.23 17.14 18.73 17.04 17.65 17.88 17.62 16.22 
hh 19.13 18.79 18.82 18.52 18.73 18.28 18.73 17.54 
ih 19.38 19.76 20.16 19.09 19.81 19.82 20.86 17.53 
iy 23.04 23.06 23.87 22.05 24.93 23.27 25.39 20.99 
jh 24.36 25.22 25.14 24.56 22.68 25.08 24.07 22.85 
k 22.18 21.82 20.62 18.65 18.63 19.94 18.93 17.64 
l 21.13 20.18 21.14 20.24 21.39 20.58 21.98 19.47 
m 16.07 15.32 16.20 15.45 16.19 15.81 17.04 14.38 
n 18.69 17.65 17.29 16.70 16.18 16.80 16.32 16.19 
ng 22.38 20.86 20.13 19.90 20.88 20.61 22.41 20.91 
ow 28.12 28.98 28.93 27.20 28.85 27.73 30.68 25.54 
oy 25.45 30.16 34.58 28.81 30.61 33.13 34.72 31.19 
p 25.06 24.90 22.50 21.05 21.32 21.94 21.25 20.45 
r 19.20 18.84 20.18 19.28 20.11 19.92 21.18 18.25 
s 26.37 24.47 24.31 23.46 24.45 24.36 24.54 23.21 
sh 19.71 21.72 19.28 18.30 20.53 18.49 20.27 16.41 
t 28.18 25.60 25.06 23.64 25.14 24.72 24.93 23.37 

th 24.09 26.39 29.14 25.58 21.31 25.21 22.59 22.05 
uh 20.64 20.61 23.10 20.45 25.35 22.68 26.16 19.88 
uw 27.65 27.73 29.05 28.00 30.35 29.40 33.64 24.97 
v 17.26 17.31 16.72 16.93 17.15 16.66 17.34 16.26 
w 20.28 20.09 22.35 19.81 20.93 20.89 22.59 19.12 
y 18.36 19.08 18.85 18.80 19.42 19.22 20.56 16.34 
z 22.38 20.42 19.94 19.07 19.37 19.24 19.10 18.99 
zh 25.60 28.40 25.25 22.62 26.38 23.95 27.28 24.66 
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Table 4 (b). Root Mean Square Error in milliseconds per phone for the eight 
feature constructors (FCs) on the WCL-1 database. Bold fonts 
indicate the best model for each model among the eight FCs. 

Phones LR m5p m5pR 
Add. Regr. Bagg. 

SMOreg 
m5pR REPTrees m5pR REPTrees 

a 24.25 25.85 25.76 24.07 24.57 24.83 26.07 22.71 
b 21.05 24.66 24.41 21.84 22.05 22.33 22.53 20.20 
c 24.16 28.40 25.43 22.48 20.29 26.62 23.62 20.85 
D 22.64 23.08 25.08 24.24 24.39 24.00 26.25 22.64 
d 19.33 20.4 23.54 21.01 21.44 21.39 24.61 20.10 
e 25.05 25.11 26.69 25.62 26.79 25.71 26.48 24.05 
f 30.13 34.11 30.41 29.95 33.13 29.50 31.94 29.56 
G 30.72 37.75 37.14 31.68 31.56 33.82 33.99 29.89 
g 34.43 38.79 34.94 35.14 40.05 34.30 37.80 33.85 
h 24.73 25.91 26.39 24.69 24.87 23.78 25.88 23.50 
i 24.17 24.30 25.54 24.27 24.68 24.68 26.98 23.09 
j 25.65 26.18 23.13 21.75 20.52 24.39 23.48 21.50 
K 45.75 44.50 45.47 43.94 46.86 45.73 45.82 43.28 
k 42.27 46.15 44.65 43.31 44.58 43.90 47.61 43.61 
ks 22.50 24.00 42.80 39.97 26.32 42.34 27.10 23.16 
l 19.95 19.34 20.63 19.85 20.17 19.65 20.96 18.31 
L 24.98 32.86 32.93 29.20 28.64 29.98 29.43 26.64 
m 22.90 22.82 23.74 22.56 23.46 22.67 23.96 22.27 
N 26.99 33.30 36.39 33.22 24.13 34.11 24.37 21.26 
n 21.76 22.14 21.58 21.21 21.07 20.96 20.88 19.38 
o 23.70 23.81 25.99 24.18 25.08 24.36 25.85 22.72 
p 29.65 32.71 31.57 28.65 30.51 29.80 30.04 28.24 
Q 23.08 25.82 25.22 23.49 24.99 23.82 26.83 23.85 
r 18.64 17.53 17.30 17.06 14.94 16.41 14.53 13.85 
s 26.93 27.65 27.28 26.10 24.75 25.47 25.11 23.49 
t 34.70 36.84 34.98 34.31 36.09 34.96 36.04 34.07 
u 23.24 22.63 27.51 24.78 25.11 25.37 29.45 23.12 
v 23.87 24.11 26.09 25.80 34.70 25.56 27.08 24.86 
w 20.83 25.71 40.93 42.47 25.92 42.98 29.62 23.66 
X 22.75 24.38 26.33 24.45 23.44 25.03 25.95 21.44 
x 20.33 24.82 26.45 23.35 21.87 24.98 25.06 21.58 
y 20.77 20.35 22.98 21.03 21.35 21.38 21.64 19.68 
Y 26.68 28.56 29.65 28.08 27.41 28.37 28.39 26.82 
z 23.05 22.38 23.31 22.64 23.13 22.98 24.68 21.58 
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Table 5.  Mean Absolute Error (MAE), standard deviation of absolute 
error (STD of AE) and Root Mean Square Error (RMSE) in 
milliseconds for the baseline FCF scheme and for the 
proposed FVE scheme on: (a) the KED TIMIT database, and 
(b) the WCL-1 database. Bold fonts indicate the best model 
among the ten models. 

(a) results on the KED TIMIT database 

PDM algorithms 
baseline, FCF proposed scheme, FVE 

MAE STD of AE RMSE MAE STD of AE RMSE 
Add. Regr. m5pR 15.72 14.94 21.69 15.74 14.92 21.69 
Add. Regr. REPTrees 15.79 14.94 21.74 15.60 14.76 21.47 
Bagg. m5pR 15.81 15.09 21.86 15.83 15.08 21.86 
Bagg. REPTrees 15.88 15.15 21.95 16.26 15.52 22.48 
IBK 15.19 14.69 21.02 17.41 15.88 23.57 
LR 15.49 14.45 21.18 15.40 14.40 21.08 
m5p 15.56 14.60 21.34 15.45 14.48 21.17 
m5pR 15.97 15.28 22.10 15.95 15.25 22.06 
RBFNN 15.53 14.49 21.24 21.28 18.37 28.11 
SMOreg 14.66 13.82 20.14 14.36 13.56 19.75 
best FC (SMOreg) – – – 14.95 14.11 20.56 

 
(b) results on the WCL-1 database 

PDM algorithms 
baseline, FCF proposed scheme, FVE 

MAE STD of AE RMSE MAE STD of AE RMSE 
Add. Regr. m5pR 17.69 19.84 26.58 17.75 19.93 26.69 
Add. Regr. REPTrees 18.00 20.56 27.32 17.89 20.22 26.99 
Bagg. m5pR 17.72 19.84 26.60 17.75 19.82 26.60 
Bagg. REPTrees 17.99 20.45 27.23 18.15 20.51 27.39 
IBK 16.98 18.85 25.47 18.53 20.29 27.48 
LR 18.32 20.19 27.26 18.22 20.11 27.14 
m5p 17.84 20.51 27.18 17.81 20.46 27.12 
m5pR 17.91 20.00 26.85 17.98 20.02 26.91 
RBFNN 17.34 19.51 26.10 21.29 21.43 30.21 
SMOreg 16.35 18.59 24.76 15.97 18.34 24.04 
best FC (SMOreg) – – – 16.78 18.81 25.21 
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Table 6.  Mean Absolute Error (MAE), standard deviation of absolute error (STD of AE) and Root Mean Square Error 
(RMSE) in milliseconds for the various feature subsets on the PDMs on: (a) the KED TIMIT database, and (b) 
the WCL-1 database. Bold fonts indicate the best model among the ten models. 

(a) results on the KED TIMIT database 

PDM algorithms 
PDM-Set 20 PDM-Set 50 PDM-Set 80 PDM-Full set 

MAE STD of 
AE RMSE MAE STD of 

AE RMSE MAE STD of 
AE RMSE MAE STD of 

AE RMSE 

Add. Regr. m5pR 15.73 14.93 21.69 15.7 14.90 21.64 15.71 14.90 21.65 15.74 14.92 21.69 
Add. Regr. REPTrees 15.63 14.80 21.53 15.66 14.79 21.54 15.63 14.76 21.49 15.60 14.76 21.47 
Bagg. m5pR 15.81 15.08 21.85 15.80 15.08 21.84 15.82 15.08 21.86 15.83 15.08 21.86 
Bagg. REPTrees 16.26 15.52 22.48 16.27 15.51 22.48 16.26 15.50 22.46 16.26 15.52 22.48 
IBK 15.78 14.71 21.57 16.81 15.85 23.10 17.11 15.78 23.28 17.41 15.88 23.57 
LR 15.40 14.42 21.09 15.39 14.41 21.08 15.39 14.40 21.07 15.40 14.40 21.08 
m5p 15.48 14.47 21.18 15.50 14.63 21.31 15.46 14.45 21.16 15.45 14.48 21.17 
m5pR 15.96 15.28 22.10 15.96 15.26 22.08 15.95 15.27 22.08 15.95 15.25 22.06 
RBFNN 16.51 14.81 22.18 18.85 17.01 25.39 20.38 17.83 27.08 21.28 18.37 28.11 
SMOreg 14.54 13.75 20.01 14.44 13.66 19.87 14.37 13.60 19.79 14.36 13.56 19.75 
best FC (SMOreg) – – – – – – – – – 14.95 14.11 20.56 

 
(b) results on the WCL-1 database 

PDM algorithms 
PDM-Set 20 PDM-Set 50 PDM-Set 80 PDM-Full set 

MAE STD of 
AE RMSE MAE STD of 

AE RMSE MAE STD of 
AE RMSE MAE STD of 

AE RMSE 

Add. Regr. m5pR 17.76 19.92 26.69 17.76 19.98 26.74 17.74 19.89 26.65 17.75 19.93 26.69 
Add. Regr. REPTrees 17.93 20.57 27.28 17.93 20.41 27.17 17.96 20.57 27.31 17.89 20.22 26.99 
Bagg. m5pR 17.73 19.83 26.60 17.74 19.84 26.62 17.75 19.83 26.61 17.75 19.82 26.60 
Bagg. REPTrees 18.13 20.53 27.39 18.14 20.54 27.40 18.14 20.54 27.41 18.15 20.51 27.39 
IBK 17.24 19.32 25.90 17.96 20.05 26.92 18.19 20.20 27.18 18.53 20.29 27.48 
LR 18.20 20.11 27.12 18.21 20.07 27.10 18.23 20.09 27.13 18.22 20.11 27.14 
m5p 17.89 20.47 27.18 17.83 20.22 26.96 17.78 20.07 26.81 17.81 20.46 27.12 
m5pR 17.93 20.01 26.87 17.96 20.01 26.89 17.95 20.02 26.89 17.98 20.02 26.91 
RBFNN 17.94 19.77 26.70 19.81 20.76 28.69 20.69 20.99 29.47 21.29 21.43 30.21 
SMOreg 16.28 18.62 24.68 16.17 18.57 24.39 16.05 18.65 24.18 15.97 18.34 24.04 
best FC (SMOreg) – – – – – – – – – 16.78 18.81 25.21 
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